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2011 East Japan Earthquake

Fukushima Nuclear Power Plant
after hydrogen explosion
The expected height of tsunami in its original design

was 6m(20’),
but actual maximum height was about 14m(47’)




Redundancy or Robustness to Disaster

We can’t know or imagine unexpected events exactly,
but engineers should speculate all possible events.

Major Earthquake

Stormy Wind

Heavy Rain, Heavy Show
Tsunami, Flood, High Tide
Volcano Explosion and Falling Ash
Fire or Explosion

i

Structures should have more
redundancy or robustness
to such disasters.




Possible Countermeasures to achieve robustness

Robustness:
The potential performance of building to deviation or uncertainty
of the design loads, building properties and so on.

Uncertainty Factor Possible Countermeasures

Giving some allowance or margin to design load

Material Property Taking the deviation of material properties into account,
especially properties of isolators or dampers of seismically
isolated structures.

Giving redundant load factor for seismic input

Seismic Response Giving enough damping to the building,
such as steel-dampers or oil-dampers
Giving some allowance or margin to seismic response




Possible Countermeasures to achieve robustness
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Giving enough damping to buildings can make seismic behavior of the building stable
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Installing through wall- columns makes the story drift smaller and prevents story collapse.
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Structural Framing Plan

Through wall-column Oilldamper
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Structural Framing Elevation

Through wall-column
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Through column in historical building

NIKKO-TOSHOGU PAGODA
Late Edo era (1818AD)

(originally 1650AD)

Aspect ratio = 7.~

Frame construction

Suspension style

Copper tile roofing
Hanegi (over hanging beams )
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Japanese traditional 5-storied Pagoda
It is suspended from upper floors, preventing

\ story collapse of the building.
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Input Ground Motions
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WAVE Max.Acc Max.Vel Max.Acc Max.Vel
(m/sec?) (m/sec) (m/sec?) (m/sec) (s)
El Centro 1940 NS 5.108 0.50 7.662 0.75 53.8
Observed |1 o 1952 EW 4.966 0.50 7.449 0.75 54.4
selsmic motion
Hachinohe 1968 NS 3.333 0.50 5.000 0.75 51.0
Ground motion |Wave1(E) 3.623 0.78 5.435 1.17 120.0
based on
o Wave2(T) 3.567 0.44 5.351 0.67 120.0
building code
supectrum Wave3(H) 3.751 0.63 5.626 0.95 120.0
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Results of non-linear response history analysis
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Results of non-linear response history analysis
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Influence of deviations or uncertainties of structural performance

13

12

11

10

Assuming : Stiffness of the 5th story has half of original one
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Effect of Through Wall-Column and Oil dampers
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S-Building (seismic retrofit)
/ Additionally Installed Frame
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Wall-column for seismic strengthening

Steel-Dampers

Seismic
Force -

Stiff Shear Wall

Wall-Columns

Wall-Column Existing Building

Shear Deformation
& Shear Yielding

Low-Yield-Point Steel for WEB
(oy=100N/mm?2)

The wall-columns equalize story
drift of the building to prevent
story collapse.

Steel spandrel beams are
installed between building and
wall-columns, and between two
adjacent wall-columns.



Results of non-linear response history analysis
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Results of non-linear response history analysis
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Summary

* Through wall-columns with damping devices make
it possible to secure good earthquake-resistant
performance.

Such system can provide robustness to the larger
seismic input or uncertainties of structural
performance.
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