15th U.S.-Japan Workshop on Improvement of

Structural Engineering and Resiliency

Seismic Response Control of the having large space

with damper and Canyon Mullion

Takeo HAIJIMA AZUSA SEKKEI Co.,Ltd. Tokyo , Japan

Contents

- **Introduction**
- Building Outline
 - Structural Planning
 - Summary of ground/foundation
 - Summary of upper structure
 - Summary of huge roof structure
 - **Structural Design Policy**
- **Analysis Resuilts**
 - Eigenvalue analysis
 - Seismic displacement of the huge roof
 - •Seismic response analysis of the huge roof

Conclusion

Introduction-1

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Introduction-2

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Introduction-3

South Wing 2
South Wing 1
Main TB
North Wing
Satellite 1
Satellite 2
Satellite 3
Hotel

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Main Building Outline-1

Location : Tokyo, Japan **Total floor area : 134,400 m²** Number of stories : 5 stories Height of building: 43.15m **Structure : Steel structure** with CFT Column 204m partly SRC or RC **Foundation : Steel pipe piles PHC piles Roof finishing : Waterproofing** with stainless steel sheet

Main Building Outline-2

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Check-in Lobby

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Ground / Foundation

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Upper Structure and Huge Roof Structure

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Huge Roof Structure

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Damper System

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Mullion System

Elevation

Structural Design Load-1

The following 7 types of design loads are adopted.

i)Dead load (G): self-weight of steel frames, catwalks, equipment loads,

finish loads, and the like

ii)Live load(P)

- iii)Snow load(S): snow depth of 30cm
- iv)Temperature load(T): $\pm 20^{\circ}$ C
- v)Wind load(W): division $\, \Pi \,$ of ground surface roughness

Standard wind velocity of 38m/s (under a return period of 100 years)

Wind force coefficients are according to wind tunnel tests

vi)Seismic load(K): at the time of first-order design : $C_0 = 0.2$

at the time of second-order design : $C_0 = 0.6$

vii)Vertical load at the time of seismic loading (KV): $K_V = 0.5G$

Structural Design Load-2

The following 6 types of combines design loads are adopted. Long-term loading stress : (I) G+P+T(II) G+P-T

Short-term loading stress: (I)G+P+S-T(II)G+P+W(III)G+P+K+KV+T(IV)G+P+K+KV-T

Seismic Force for Design

Seismic Forces: Modal Analysis (SRSS)

Eigenvalue analysis model

- 3-dimensional space analysis model
- The node mass
 - Pillarabout 600 nodesRoofabout 1000 nodes
- Eigenvalue analysis

100-order.

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Eigenvalue Analysis -1

Modal order	Natural frequency (Hz)	Natural period (sec.)	Participation factor			
			βx	βy	βz	
1	0.967	1.034	281.81	0.68	0.01	
2	1.043	0.960	-0.76	290.71	-4.65	
3	1.104	0.906	54.94	0.63	0.15	
4	1.513	0.661	0.10	35.33	37.97	
5	1.548	0.646	1.97	-0.59	-0.15	
6	1.583	0.632	-0.06	-6.49	-17.45	
7	1.645	0.608	-4.42	0.30	0.25	
8	1.700	0.590	-0.07	2.79	9.47	
9	1.775	0.563	-6.55	-0.18	-0.05	
10	1.860	0.538	0.13	4.74	-7.14	

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency

Seismic Displacement of the Huge Roof

Location	Direction	Case 1	Case2	Case1/Case2
٨	Δy	261	315	0.83
A	Δz	84	210	0.40
В	Δy	198	195	1.02
	Δy	264	306	0.86
C	Δz	-159	-234	0.68
D	Δy	249	255	0.98

Seismic Response Analysis results

Wave	Acceleration(cm/sec2)			Displacement(mm)		
	Case1	Case2	Case1/Case2	Case1	Case2	Case1/Case2
HACHINOHE	666	993	0.67	-130	-160	0.82
KOBE	-675	1804	0.38	130	-240	0.55
RANDOM1	-821	1853	0.44	-150	-250	0.60
RANDOM2	786	1801	0.44	140	-260	0.54
RANDOM3	785	-1762	0.45	160	-240	0.67

Conclusions

- ★ High-strength steel between cantilever beams in the large roof and basement made it possible to reduced vertical movement when huge earthquakes happen.
- ★ The result assured that oil-damper made it possible to reduced acceleration and displacement when huge earthquake happen.

Thank you very much for kind attention

15th U.S.-Japan Workshop on Improvement of Structural Engineering and Resiliency