Detection of Soil-Structure-Interaction Effect by System Identification

> OHajime Okano Kobori Research Complex Inc. Tokyo, Japan Tatsuya Azuhata NILIM, Tsukuba, Ibaraki, Japan

Seismic Network for Building and Ground

Seismic Networks for Ground

- ♦ K-NET,KiK-net
 - Facilitated by NIED after 1996
 - 1000Site,20km average distance

Seismic Network for Building

- Has not facilitated yet, and its construction has been desired.
 - Because, there is the mismatch between the observed ground motion and the damage of structure.
- NILIM* has started to construct the seismic network for building and <u>surrounding ground</u> in 2010

* National Institute of Land and Infrastructure Management

Mismatch between Ground Motion and Damage

 Large ground motion versus smaller structure damage than expected

Possible Factors

- Designed strength and real strength
- Evaluation of damage from response
- Soil Structure Interaction (SSI)

How to know SSI-effect from Seismograph?

SSI effect is included in the seismograph, and it is difficult to disaggregate SSI effect by simple manipulation of seismograph.

System Identification

System Identification for SSI

4

- RC-Frame and RC Bearing Wall
- Foundation: RC Pile
- Surface Layer :Vs ≒ 200m/s
- Occupancy
 :Education

6F

 Location :South Part of Saitama Pref. (near Tokyo)

3/09/2014 Fore-Shock (NIT, Ridge-dir.)

3/11/2014 Main Shock (NIT, Ridge-dir.)

7

4/11/2014 After-Shock (NIT, Ridge-dir.)

Transition of Stiffness and Damping (NIT, Ridge-dir.)

- Stiffness of building: has not recovered in after main-shock
- Stiffness of soil-spring: has recovered in after-shock
- Damping coefficient of soil-spring: has not recovered after main shock

Effect on Maximum Building Response

- Adopt r.m.s. response (standard deviation) as substitute of maximum response
 - Assumptions
 - Response is stationary random
 - Peak factor is constant
 - ♦ Benefit
 - Directory calculated by identified transfer functions and parameters

SSI Effect on R.M.S. Building Response

	Transfer Function	r.m.s. Building Resp.
Building vs. Foundation Input Motion (II)	$\left H_{X_{1}/Y_{FIM}}(\omega)\right = \frac{\left Z_{1obs} - Z_{0} - \Theta_{0}H\right }{\omega^{2}\left Y_{FIM}\right }$	$\sigma_{X_1/Y_{FIM}} = \sqrt{2\int_0^\infty \left H_{X_1/Y_{FIM}}(\omega) \right ^2 S_0(\omega) d\omega}$
Building vs. Free Filed ground motion (II+KI)	$\left H_{X_{1}/Y_{FF}}(\omega)\right = \frac{\left Z_{1obs} - Z_{0} - \Theta_{0}H\right }{\omega^{2}\left Y_{FF}\right }$	$\sigma_{X_1/Y_{FF}} = \sqrt{2\int_0^\infty \left H_{X_1/Y_{FF}}(\omega)\right ^2 S_0(\omega) d\omega}$
Building vs. Foundation Response (Fixed Base Response)	$\left H_{X_{1fix}}(\omega)\right = \frac{\left Z_{1obs} - Z_0 - \Theta_0 H\right }{\omega^2 \left Z_0 + \Theta_0 H_{obs}\right }$	$\sigma_{X_{1fix}} = \sqrt{2\int_0^\infty \left H_{X_{1fix}}(\omega) \right ^2 S_0(\omega) d\omega}$
 Input Motion 		
$_{p}S_{V}(\omega) = \text{cnst.}$	$\Box > S_0(\omega) \propto \alpha$)

approximately

Transition of SSI Effects (NIT, Ridge-dir.)

- Reduction by KI is almost constant
- Reduction by II decreased after main shock

Conclusions

- The stiffness of RC building has not recovered, but the soil spring stiffness has recovered
 gradually in after-shocks.
- The response reductions by kinematic interaction (KI) have been almost constant in fore/main/after-shocks.
- Contrary the response reductions by inertial interaction (II) have decreased after main shock.