STRUCTURAL DESIGN OF THE SEISMIC RESPONSE CONTROLLED BUILDINGS WITH ROBUSTNESS

Shinya NISHIMOTO, Yozo SHINOZAKI, Megumi KAWASAKI, Koji TSUCHIMOTO Taisei Corporation Tokyo, Japan

2011 East Japan Earthquake

Fukushima Nuclear Power Plant after hydrogen explosion

The expected height of tsunami in its original design was 6m(20'),

but actual maximum height was about 14m(47')

Redundancy or Robustness to Disaster

We can't know or imagine unexpected events exactly, but engineers should speculate all possible events.

Major Earthquake Stormy Wind Heavy Rain, Heavy Snow Tsunami, Flood, High Tide Volcano Explosion and Falling Ash Fire or Explosion

Structures should have more redundancy or robustness to such disasters.

Possible Countermeasures to achieve robustness

Robustness:

The potential performance of building to deviation or uncertainty of the design loads, building properties and so on.

Uncertainty Factor	Possible Countermeasures				
Loading	Giving some allowance or margin to design load				
Material Property	Taking the deviation of material properties into account, especially properties of isolators or dampers of seismically isolated structures.				
Seismic Force	Giving redundant load factor for seismic input				
Seismic Response	Giving enough damping to the building, such as steel-dampers or oil-dampers Giving some allowance or margin to seismic response				

Possible Countermeasures to achieve robustness

Giving enough damping to buildings can make seismic behavior of the building stable

Installing through wall- columns makes the story drift smaller and prevents story collapse.

Ginza 2, Chuo-ku, Tokyo, Japan

Structural Outline

Structural Framing Elevation

Through column in historical building

ロルオロルウエエサルイフロ

tot o

Clearance gap beneath the bottom of suspended column

Trough column is installed at the center of the Japanese traditional 5-storied Pagoda It is suspended from upper floors, preventing story collapse of the building.

Suspended through column

Input Ground Motions

WAVE		Level2		Level3		T :
		Max.Acc	Max.Vel	Max.Acc	Max.Vel	Time
		(m/sec ²)	(m/sec)	(m/sec ²)	(m/sec)	(s)
Observed seismic motion	El Centro 1940 NS	5.108	0.50	7.662	0.75	53.8
	Taft 1952 EW	4.966	0.50	7.449	0.75	54.4
	Hachinohe 1968 NS	3.333	0.50	5.000	0.75	51.0
Ground motion based on building code supectrum	Wave1(E)	3.623	0.78	5.435	1.17	120.0
	Wave2(T)	3.567	0.44	5.351	0.67	120.0
	Wa∨e3(H)	3.751	0.63	5.626	0.95	120.0

Velocity response spectrum(Level2)

Response story drift angle to Level2(DBE)

Response story drift angle to Level3(MCE)

Influence of deviations or uncertainties of structural performance

Assuming : Stiffness of the 5th story has half of original one

Response story drift angle to Level3(MCE)

Effect of Through Wall-Column and Oil dampers

Ground Motion with Building Code Spectrum(Level 2)

S-Building (seismic retrofit)

Wall-column for seismic strengthening

Wall-Column

Existing Building

Wall-Columns

Response story drift angle to Level2(DBE)

Response story drift angle to larger seismic input

Summary

 Through wall-columns with damping devices make it possible to secure good earthquake-resistant performance.

 Such system can provide robustness to the larger seismic input or uncertainties of structural performance.