Resilience-Based Seismic Design: Current Design Approach, Technical Developments, and a Look Into the Future

Curt B. Haselton, PhD, PE

Professor and Chair @ Cal. State Chico Co-Founder @ HB-Risk Group [www.hbrisk.com]

Jack W. Baker, PhD

Associate Professor @ Stanford University Co-Founder @ HB-Risk Group

[and discussion of project work by many others]

How Do We Design U.S. Buildings Today?

- Building Life Safety:
 - This is the focus (intent of the building code).
 - **Result:** Probably do fairly well here (?).
- Building Closure and Business Disruption:
 - Not considered is design process.
 - **Result:** Not controlled. Likely "months" at design-level, possible demolition ("years") at maximum-level.
- Building Damage and Repair Costs:
 - Not considered is design process.
 - **Result:** Not controlled. Presume 20% loss at designlevel, possible demolition at maximum-level.

How Do We Design U.S. Buildings Today?

- Building Life Safety:
 - This is the focus (intent of the buil
 - Result: Probably do fairly well he
- Building Closure and Business Dis
 - Not considered is design process.
 - Result: Not controlled. Likely "monospible demolition ("years") at many

Question #2: Is this how we should design buildings?

Question #1:

Why do we

design this way?

- Building Damage and Repair Costs:
 - Not considered is design process.
 - **Result:** Not controlled. Presume 20% loss at designlevel, possible demolition at maximum-level.

What If ?

What if we...

- ...had a robust analysis method that could estimate monetary losses, closure time, and fatalities/injuries?
- ...had an analysis method detailed enough so we can clearly see the effects of our design decisions?
- ...had this analysis stream-lined so we can do the initial analysis in hours (rather than days/weeks) and then refine the analysis as needed?
- ...had a building rating system (USRC) that packages this all into an easily communicated result? [Heintz]
- How would this change our thinking?

Overview of FEMA P-58

- P-58 is a performance prediction methodology based on a 10-year FEMA study (enabled by much previous research).
- P-58 is an alternative to other experience-based or judgmentbased methods (e.g. HAZUS, ATC-13, etc.).
- P-58 is tailored to building-specific analysis (cause + effect).
- ATC is currently working on another 5-year effort to further advance the methodology, implementation, ease of use.
- FEMA P-58 Output Results:
 - Losses [\$]
 - Fatalities & injuries [safety]
 - Repair time & red tagging [business disruption]

15th ATC US-Japan Workshop on Structural Engineering and Resiliency

Seismic Performance Assessment of Buildings Volume 1 - Methodology

FEMA P-58-1 / September 2012

🍪 FEMA

16

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves

Most Typical Specifications

- Hazard and Ground Mo
 - Soil and hazard cur
 - Ground motions (if
- Structural Responses
 - Option #1: Response
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves

A: Substructure			623
A10: Foundations			83
A101: Standard Foundations	Please Select		0
A102: Special Foundations	Please Select	•	
A103: Slab on Grade	Please Select	•	23
A20: Basement Construction			10
A202: Basement Walls	Please Select	-	10
B: Shell			13
B10: Super Structure			10
B101. Floor Construction	Please Select		123
B102: Roof Construction	Please Select	-	85
4 4 Level 1 of 2 (Floor 1) ▶ Category	Franky ID	Dr 1	
A: Substructure			13
A10: Foundations			10
A101: Standard Foundations	Please Select	•	13
A102: Special Foundations	Please Select	*	10
A103: Slab on Grade	Please Select	-	
A20: Basement Construction			10
			10
A202: Basement Walls	Please Select		10 10

15th ATC US-Japan Workshop on Structural Engineering and Resiliency Dr.1

Dir. 2

- Hazard and Ground Mot
 - Soil and hazard cur
 - Ground motions (if
- Structural Responses
 - Option #1: Response
 - Option #2: Simplified method

Category	Fragility ID		Dir. 1	Dir. 2
Substructure			123	10
A10: Foundations			8	1
A101: Standard Foundations	Please Select	•	20	173
A102: Special Foundations	Please Select			1
A103: Slab on Grade	Please Select	•	<u></u>	0
A20: Basement Construction			10	
A202: Basement Walls	Please Select		1	1
Shell			13	1
B10: Super Structure			10	1
8101. Reor Construction	Please Select		10	12
B102: Roof Construction	Please Select		873	[²⁷]
oor By Floor Distribution				
oor By Floor Distribution	I Fragily ID		Dir 1	Dr. 2
oor By Floor Distribution	i Frigity (0)		Dir, 1	Dir. 2
oor By Floor Distribution	Fringility ID		Dr. 1	Dr. 2
oor By Floor Distribution (Finglity ID Picone Solicit		Dr. 1	Dir. 2
Soor By Floor Distribution (Level 1 of 2 (Floor 1)))) steppoy Scientra chara A10: Scandar Faundations A102: Special Foundations	Finglity ID Please Select Please Select		Dr. 1	Dir. 2
Coor By Floor Distribution (Level 1 of 2 (Floor 1) > 1 Antopoy Schemachene Alto: Foundations Alto: Schemachene A101: Standard Foundations Alto: Special Foundations Alto: Special Foundations A103: Special Foundations Alto: Special Foundations Alto: Special Foundations	I Proglity ID Picone Select Picase Select Picase Select		Dr. 1	Dr. 2
oor By Floor Distribution ((Level 1 of 2 (Floor 1)) stogay Substructore A10: Foundations A10: Standard Foundations A10: Secul Foundations A103: Secul Foundations A103: Set on Grade A20: Besenter Construction	I Frighty ID Please Select Please Select Please Select		Dr. 1	Dr. 2
oor By Floor Distribution (Level 1 of 2 (Floor 1)))))))))))))))))))	Please Select Please Select Please Select Please Select		Dr. 1	Dr. 2
Accord By Floor Distribution (f < Level 1	I Proglity ID Picone Solect Picase Solect Picase Solect Picase Solect		Dr. 1	Dr. 2

Most Typical Specifications

Fragility IC Hazard and Ground Mot Please Sele Please Selec Jeann Selec Soil and hazard cur Please Selec B10- Super Structu Ground motion • Structural Response Option #1: Res Option #2: Sim

Structural Engineering and Resiliency

Dir. 1

Dir. 2

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
- Loss Estimation (loss curves) and other consequences

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
- Loss Estimation (loss curves) and other consequences

Monte Carlo Simulation used ("roll dice" thousands of times).

Each "dice roll" gives a single observation of losses and other consequences.

Full set of "dice rolls" provides solid statistical information on performance (e.g. 10,000 at 14 levels = 140,000 runs).

FEMA P-58: Output Examples

Sample results (12-story RC frame):

FEMA P-58: Output Examples

Sample results (12-story RC frame):

FEMA P-58: Output Examples

Dig as deep as you like...

FEMA P-58: Benefits

- Objective process based on data and research.
- Quantitative performance information:
 - Solid statistical basis.
 - Sensitive enough to inform design decisions (cause + effect).
 - Tools to communicate with owners.
 - Dig as deep as you like.

FEMA P-58: Perceived "Difficulty"

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
- Loss Estimation (loss curves) and other consequences

I need to hire a geotech to do this...?

I need to do a response-history analysis...?

I need to count and enter every foot of partition wall and other contents...?

- A barrier to widespread FEMA P-58 adoption has been related to software and ease-of-use (high cost of entry).
- ATC/FEMA have created a great methodology but are not in the business of maintaining software (for the long-term).
- Need: For our profession to move forward with FEMA P-58 methods, an enabling software is needed.
- Our Contribution: In February, we decided to fill this role by creating/maintaining a user-friendly software for P-58.
- Our Goal: Help enable adoption of FEMA P-58 in practice.
- ATC Coordination: We have been in coordination with ATC from the start (so all pulling in same direction).

- A barrier to widespread FEMA P-58 adoption has been related to software and ease-of-use (high cost of entry).
- ATC/FEMA have created a great methodology but are not

Need: method

in the b

Seismic Performance Prediction Program by Haselton Baker Risk Group

- Our Contribution: In February, we decided to fill this role by creating/maintaining a user-friendly software for P-58.
- Our Goal: Help enable adoption of FEMA P-58 in practice.
- ATC Coordination: We have been in coordination with ATC from the start (so all pulling in same direction).

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
- Loss Estimation (loss curves)

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves

Soil and hazard curves embedded.

Simplified method embedded (only need period, mode shape, yield drift).

Structural and nonstructural contents estimates and prepopulated.

Loss Est <u>Two-level structure</u>:

 (1) Simple (prelim. design, basic rating, PML)
 (2) Refine and go as deep as you like (full new PBD).

What If ?

What if we...

- ...had a robust methodology that can estimate monetary losses, closure time, and fatalities/injuries?
- ...had a methodology detailed enough so we can clearly see the effects of our design decisions?
- ...had this analysis stream-lined so we can do the initial analysis in hours (rather than days/weeks) and then refine the analysis as needed?
- ...had a building rating system (USRC) that packages this all into an easily communicated result? [Heintz]
- How does this change our thinking?

Discussion: Back to my Initial Question...

Question: Given all these recent technical developments, is this <u>still</u> how we should design buildings?

Current Design:

- Safety: Probably decent.
- **Building Closure:** Not controlled. Likely "months" at design-level, possible demolition ("years") at maximum-level.
- **Repair Costs:** Not controlled. Presume 20% loss at design-level, possible demolition at maximum-level.
- Exciting time of development (FEMA P-58, software, USRC, etc.). How do we leverage this to achieve a more resilient infrastructure?
- What are our policy recommendations for:
 - The design of all buildings?
 - The municipality (or State of CA) worried about widespread building damage and businesses closure affecting the city/region?
 - Owner-elected improved design to protect business or assets?
 - Other?

- Thank you for your attention and feedback!
- E-mail:
 - chaselton@csuchico.edu
 - curt@hbrisk.com
- Cell: (530) 514-8980