Displacement-based Seismic Design of Masonry Shear Wall Structures

Farhad Ahmadi, Ph.D., P.E., S.E. Research and Development Walter P Moore and Associates

Big Island of Hawaii, HI

December 4, 2014

important points of this presentation

- current seismic design does not always work well for shear-wall structures
- proposed displacement-based seismic design works well for shear wall structures
 - produces structures that behave reliably in strong earthquakes
 - more consistent and more transparent than current seismic design

project participants

*⇒*UCSD | Structural Jacobs | Engineering

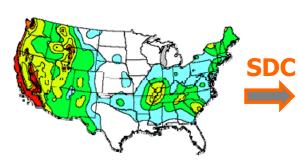
Prof. Richard Klingner Jaime Hernandez Barredo

Prof. Benson Shing

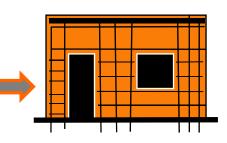
Andreas Stavridis Marios Mavros

Prof. David McLean

Jacob Sherman Christina Duncan Will Cyrier


contents of presentation

- review and examine current seismic design of masonry shear wall structures
- develop proposed displacement-based design
- check and validate displacement-based seismic design



current force-based design approach ...

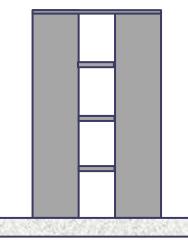
- determine seismic design category (SDC) based on geographic location and soil
 - select from ASCE 7 list of permitted structural systems
 - special, intermediate reinforced masonry shear walls
 - prescribed detailing for each wall segment

Seismic Force-Resisting System	ASCE 7 Section where Detailing Requirements are Specified	Response Modification Coefficient, R ^o	System Overstrength Factor, Ω ₀ ^g	Deflection Amplification Factor, C _{of} ^b	Structural System Limitations and Building Height (ft) Limit ⁶ Seismic Design Category				
A. BEARING WALL SYSTEMS									
1. Special reinforced concrete shear walls	14.2 and 14.2.3.6	5	21/2	5	NL	NL	160	160	10
 Ordinary reinforced concrete shear walls 	14.2 and 14.2.3.4	4	21/2	4	NL	NL	NP	NP	N
2. Datailed plain concerts cheer walls	14.2 and 14.2.2.2	2	214	2	NI	ND	NID	ND	NI
4. Ordinary plain concrete shear walls	14.2 and 14.2.3.1	11/2	21/2	11/2	NL	NP	NP	NP	N
5. Intermediate precast shear walls	14.2 and 14.2.3.5	4	21/2	4	NL	NL	40^k	40 ^k	40
6. Ordinary precast shear walls	14.2 and 14.2.3.3	3	21/2	3	NL.	NP	NP	NP	NI
7. Special reinforced masonry shear walls	14.4 and 14.4.3	5	21/2	31/2	NL	NL	160	160	10
 Intermediate reinforced masonry shear walls 	14.4 and 14.4.3	31/2	21/2	21/4	NL	NL	NP	NP	NI
 Ordinary reinforced masonry shear walls 	14.4	2	21/2	13/4	NL	160	NP	NP	NI
10. Detailed plain masonry shear walls	14.4	2	21/2	13/4	NL	NP	NP	NP	N
11. Ordinary plain masonry shear walls	14.4	11/2	21/2	11/4	NL	NP	NP	NP	N
12. Prestressed masonry shear walls	14.4	11/2	21/2	13/4	NL	NP	NP	NP	N
 Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets 	14.1, 14.1.4.2, and 14.5	61/2	3	4	NL	NL	65	65	65
 Light-framed walls with shear panels of all other materials 	14.1, 14.1.4.2, and 14.5	2	21/2	2	NL	NL	35	NP	N

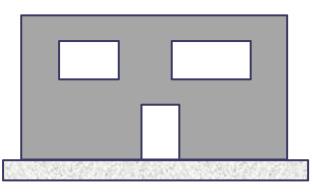
prescriptive reinforcement

ASCE 7 list of permitted systems

... current force-based design approach

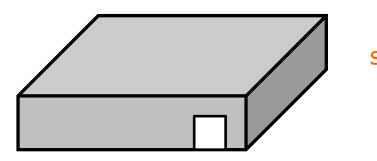

- based on structural system, assign seismic design factors (R, C_d , Ω_0)
 - design for elastic forces divided by R
 - design for elastic displacements multiplied by C_d
 - design elements that must remain elastic for elastic forces divided by R and multiplied by Ω_0

Seismic-Load Resisting Systems	R	C _d	$arOmega_0$
Special RM Load Bearing Shear Walls	5	3 1/2	2 1/2
Intermediate RM Load Bearing Shear Walls	3 1/2	2 1/4	2 1/2


force-based design does not always work well

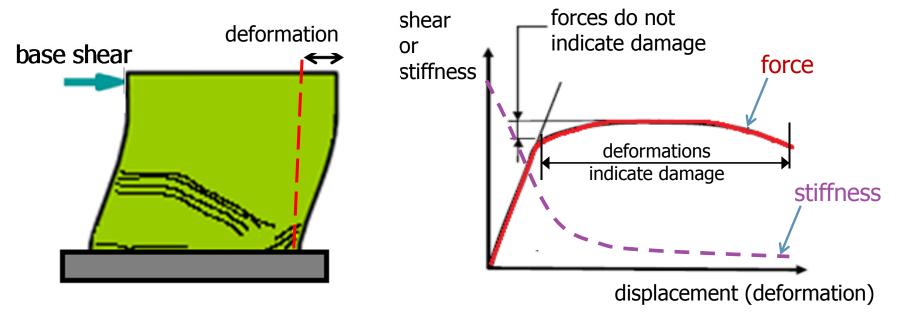
• final behavior is not always consistent with design intent

easy to design


may be impossible to design rationally

weakly coupled walls

irregular openings


 ductility required by R and implied by detailing may not be available

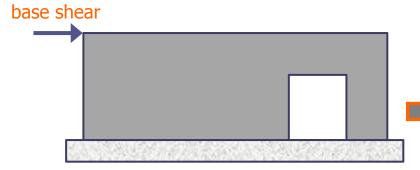
a low-rise structure in SDC D will not achieve high ductility

force-based design requirements are not reliable

 emphasis on forces instead of deformations is misguided

force-based principle is not valid for short-period structures

better design approaches?


structural period

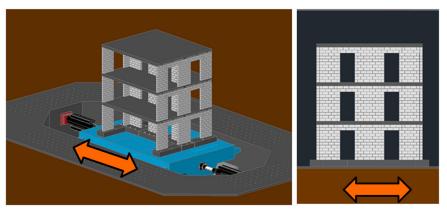
ductility demand

aspect ratio

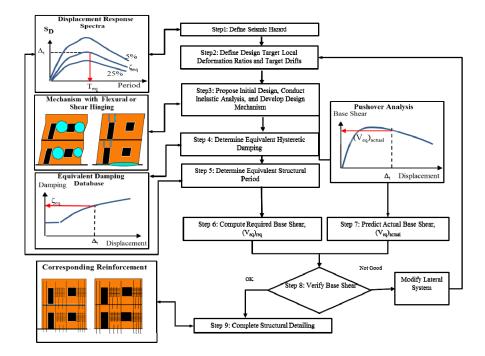
plan layout

- modified force-based
 - R-factor accounts for actual system behavior

- displacement-based
 - emphasizes deformations
 - designer determines deformation limits

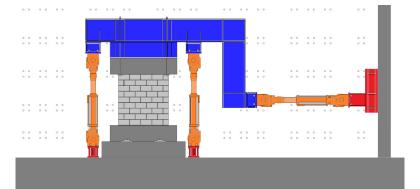


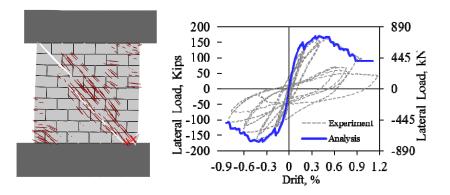
next


generation of *R*-factor

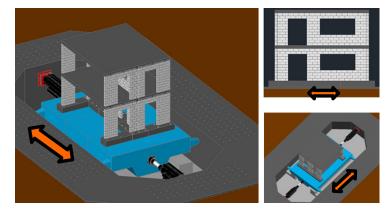
5 major tasks in this research . . .

 task 1- examined the behavior masonry buildings designed using forcebased procedures

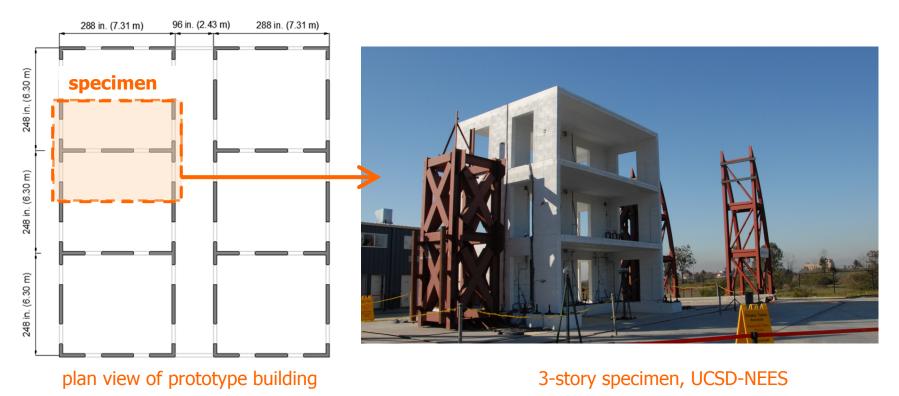

 task 2- developed displacement-based seismic design method



... 5 major tasks in this research


 task 3- conducted cyclic-load tests on masonry wall segments at UT Austin and WSU

 task 4- improved analytical tools



 task 5- validated displacementbased seismic design for masonry

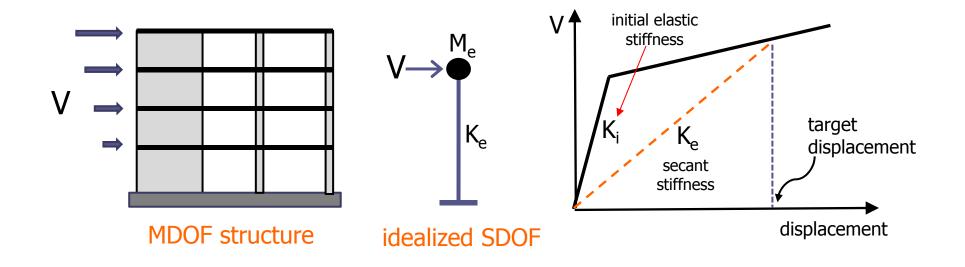
task 1- examine force-based procedures

- used shake-table tests to examine overall and local behaviors of masonry buildings
- evaluate the performance of special reinforced masonry walls
- assess the failure mechanism of a real wall system

3-story specimen behaved well

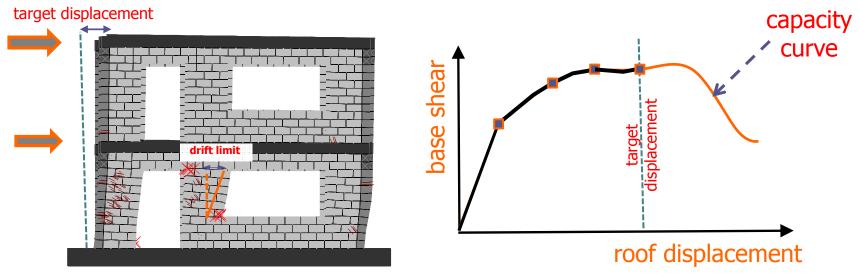
 specimen was subjected to an extended series of ground motions

Level of Ground Scale Motion Factor Excitation 20% 45% NEES 90% Imperial DE 120% Valley 1979 150% **El Centro** 180% MCE 250% above MCE Imperial Valley 1940 **El Centro** 300% #5 NEES@UCSD NIST 125% MCE Northridge 1994 1.25 MCE 160% Sylmar Chi Chi 150% 2.0 MCE 1999

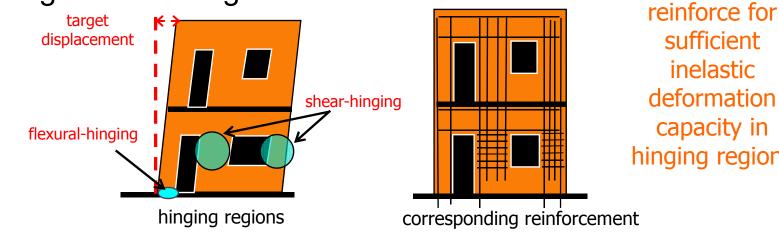

150 % Chi Chi 1990 (2 MCE)

Design Earthquake (DE),10% in 50 years

Maximum Considered Earthquake (MCE), 2% in 50 years

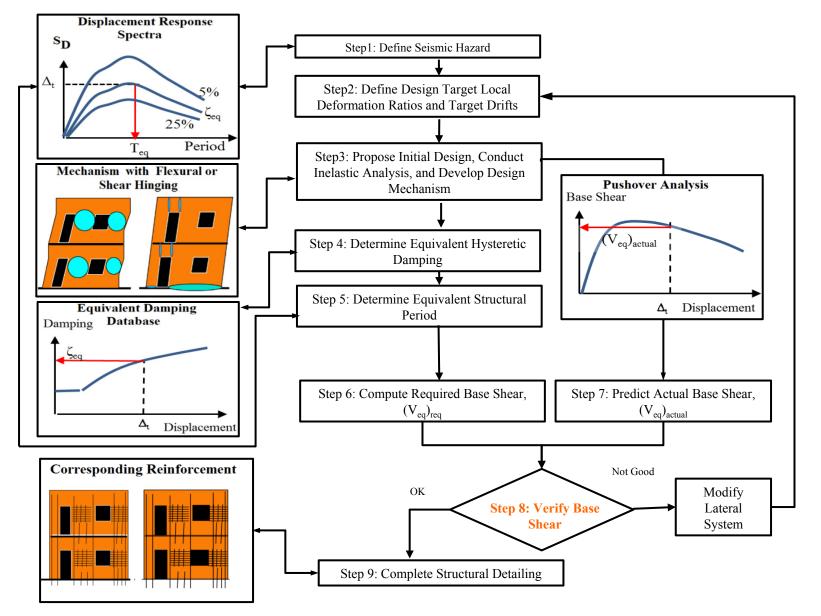

task 2- develop displacement-based design

- based on achieving specified deformation limits under selected seismic hazard levels
- fundamental difference between force-based and displacement-based design

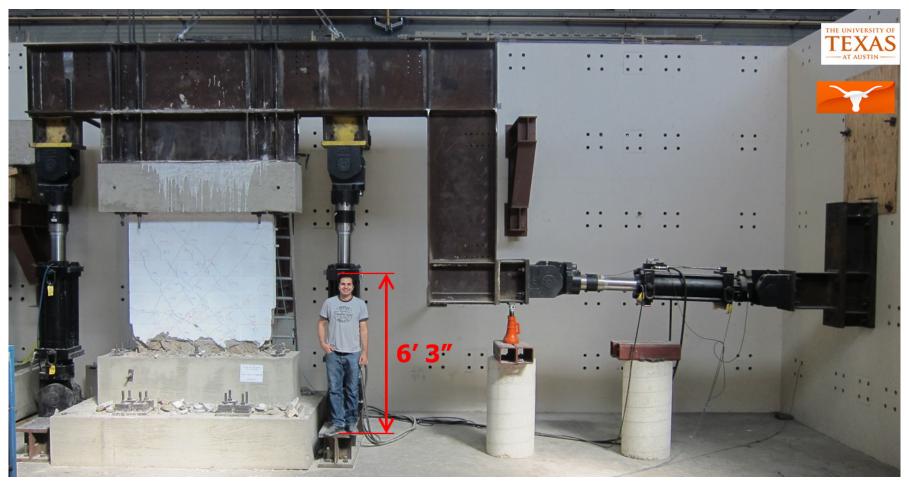


technical basis for displacement-based method

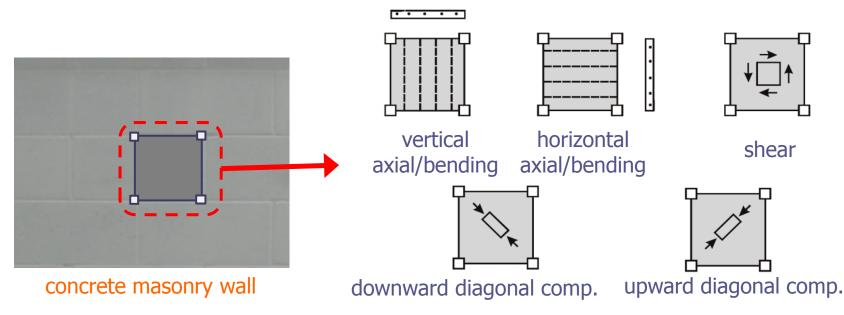
select a reasonable target mechanism for each hazard level



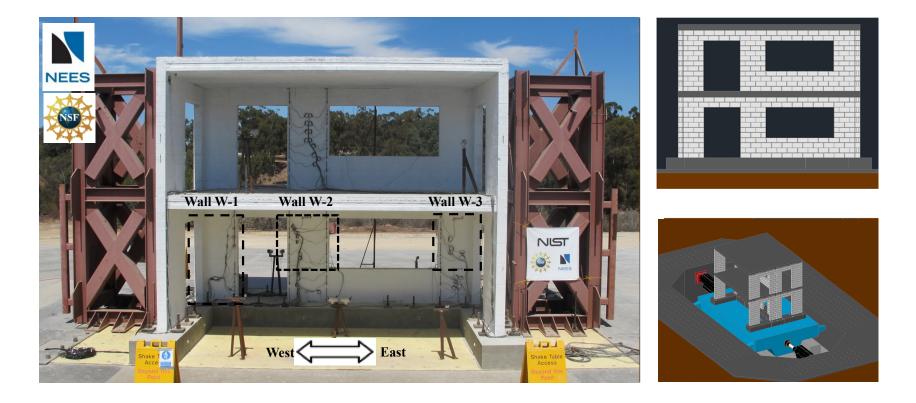
 identify the inelastic deformation demands and adjust strength or detailing


inelastic deformation capacity in hinging regions

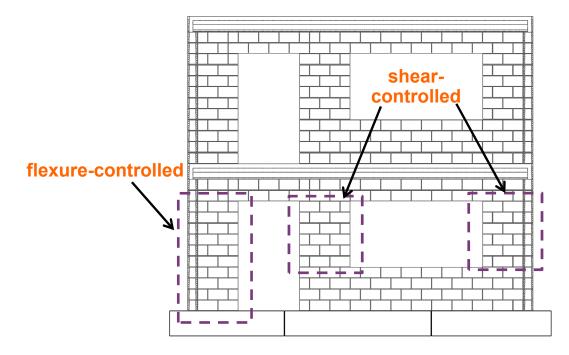
fundamental steps


task 3- conduct cyclic-load test of shear-walls

 designed and conducted cyclic-load tests of 41 masonry shear-walls at UT Austin and WSU


task 4- improved analytical tools

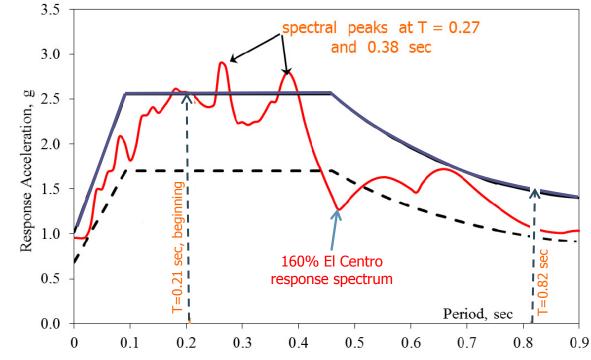
- predict nonlinear resistance and failure behavior
- predict local and global responses and deformations
- different modeling approaches were considered
 - nonlinear "macro" models, PERFORM 3D "General Wall Element"


task 5- validation of displacement-based design

- application of proposed displacement-based design and analytical tool
- a full-scale two-story reinforced masonry shear-wall system, complex geometry of openings

select seismic hazard levels and target drifts

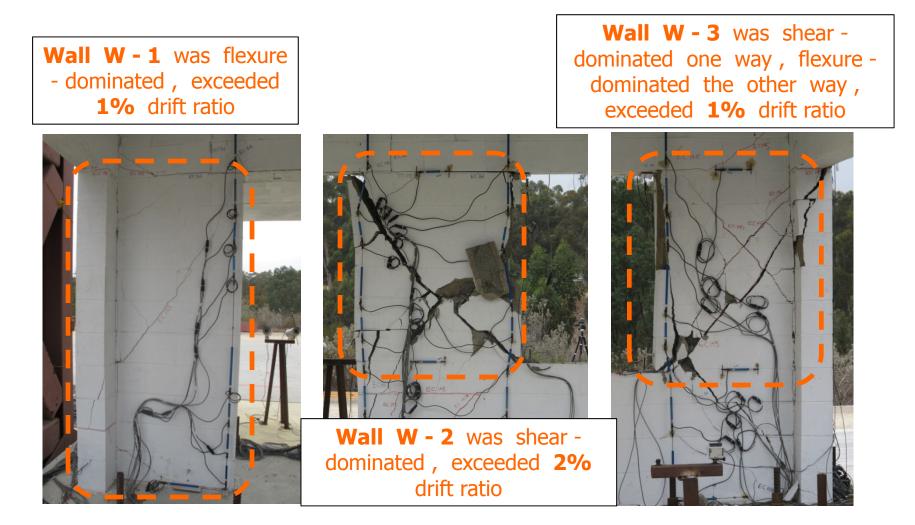
seismic hazard		deformatio	corresponding	
Level	damage state	flexure-controlled wall segments	shear-controlled walls segments	inter-story drift ratios
Design Earthquake (DE)	Safety Damage State	0.8 %	0.5 %	0.3 %
Maximum Considered Earthquake (MCE)	Collapse Damage State	1.5 %	1.0 %	0.6 %



shake table test of 2-story specimen

 specimen was subjected to an extended series of ground motions

order	ground motion
1	30% El Centro 1979
2	43% El Centro 1979
3	86% El Centro 1979
4	108% El Centro 1979
5	145 % El Centro 1979
6	160% El Centro 1979


shake-table test of specimen above MCE

 specimen successfully resisted repeated ground motions up to MCE

measured vs. predicted responses

walls exceeded expected deformation capacities

important points of this presentation

- current force-based seismic design does not always work well for reinforced masonry shearwall structures
- proposed displacement-based seismic design works for masonry shear wall structures
 - it produces structures that behave reliably in strong earthquakes
 - it is more consistent and more transparent than current force-based seismic design

