

"Ductility is Damage" People Don't want to live in Damaged Buildings

Akira Wada Professor Emeritus Tokyo Institute of Technology

Professors recommend Ductile Frames to students.

Ductility is Damage 1/2

- The Ds values are 0.25 to 0.55 in Japanese seismic design procedure, and the R factors are 2 to 8 in the USA.
- Almost all structural engineers rely on the plastic deformability of beams, columns and walls of building structures during seismic design of structures.

Ductility is Damage 2/2

- The ductility as plastic deformation of frames is the damage of structures.
- This is easy to understand for young boys and girls to old ladies and gentlemen.
- Normal people don't want to live in the damaged buildings. Then, these damaged buildings become to be demolished after the big earthquake.

"Designed to protect life in extreme event, but damage is expected" Prof. Stephen Mahin said.

Akira Wada

Kobe Earthquake 1995

Akira Wada

ATC & JSCA 株式会社新井組 1995年技術研究報告集 い

Akira Wada

ATC & JSCA 株式会社新井組 1995年技術研究報告集なり

Perfectly Demolished after 1995 Earthquake

Akira Wada

ATC & JSCA 株式会社新井組 1995年技術研究報告集 り

All trucks were bringing huge gavages produced from collapsed buildings and demolished buildings.

Residual displacements of 14 story Steel Concrete Apartment Building in Sendai-City

Residual displacements of 14 story Steel Concrete Apartment Building in Sendai-City

12 story Steel Concrete Apartment Building of Sendai-City

Akira Wada

Courtesy of Prof. Scasushi Sanada, Osaka University

Christchurch before 2011 Earthquake

Christchurch after 2011 Earthquake

Current Seismic Design

- H. Only Human life to be safe
- B. Building cannot use after repair
- C. No Continuous Use after earthquake

We can not make our city sustainable and resilience against big earthquake. We need to change our seismic design concept.

New Seismic Design

- H. Human life have to be safe
- B. Building can use after some repaired
- C. Continuous Use just after earthquake

Against Small and Medium Earthquake ----We can satisfy H, B and C easily. Against Big Earthquake -----We have to satisfy H and B, some case C.

New Seismic Structures

- Seismic Isolated Structures
- Passive Controlled Structures
- Stepping Columns Structures
- Elastic Joints of Pre-casted RC
- Other Good Structures

Seismic Isolated Steel Tall Building constructed in TITech.

Akira Wada

Damage Controlled Structures

Building Structures

Primary Structure

(To Support Vertical Load)

Seismic Members

(To absorb earthquake energy)

We have to learn good ideas from Nature

Some kind of Sacrifice for Human Body

, Collar bone

C & JSCA

Akira Wada

A Bumper protecting people and Bus

Akira Wada

A Fuse protecting important PC

Akira Wada

Detail of Unbonded Braces

Many Unbonded Braces are Installed

ATC & JSCA

Akira

Fig. 1Earthquake ground motion vs. Damage or Repair costAkira WadaATC & JSCA27

aWada

Damages of buildings in the city after big earthquake, in the case that all buildings were designed as ductile frame structure.

Akira Wada

Damages of buildings in the city after big earthquake, in the case that all buildings were designed as strength oriented structure.

Akira Wada

Damages of buildings in the city after big earthquake, in the case that all buildings were designed as passive controlled structures.

Akira Wada

Almost no damage of building in the city after big earthquake, in the case that all buildings were designed as seismic isolated structures.

Akira Wada

Big earthquake occurs Many buildings in the city Present 100 200 300 400 500 Year

Almost all buildings will be perfectly collapsed by the next big earthquake when these buildings have poor seismic performance. Akira Wada ATC & JSCA

Many buildings will be demolished after the next big earthquake when these buildings are designed by ductile moment structural system.

Big earthquake occurs

Conclusion 1/3

- Who does pay money for demolishing many damaged buildings and clean up the damaged city?
- Does money come from insurance, city, prefecture, government or owner?
- When owner did not need to pay it, they will built ductile building, because it seems like cheap.
- A city is consisted of many buildings.

Conclusion 2/3

- After major earthquake, structural engineers put red tags to damaged buildings, even if these buildings are not so severe damage, they tend to put red tag.
- People don't want to return to the red tag building.
- When many buildings were demolished in a city, we can not stay in the city and we can't say that we make a resilient city.

Conclusion 3/3

- We have to consider not only resilience of a building, but also resilience of a city consist of many buildings.
- Then we can not recommended to make buildings rely to large ductility.
- When we make a rule that owner have to pay, people will built his building more strong.

An individual building is component of a big city

- The probability of occurrence of a large earthquake ground motion could be neglected in the design process of a building under the economic consideration and the engineering judgments.
- However, this would be a big gamble of the city.

Seismic design for a big city

- The seismic issues of a city cannot be solved, if the seismic resistance of its individual building is determined only from the relationship between the life of a single building and the earthquake occurrence in its life span.
- We have to make resilience city and country against big earthquake.

Prof. Robert Park at Canterbury University

Prof. R. Park introduced ductile moment reinforced concrete frames in earthquake prone countries, but he have said at that time:

Ductility is not final goal.

Thank you very much for your attention.

We, structural engineers, have a mission to make the world a better place to live.

Akira Wada