SIGNIFICANCE OF BEATING OBSERVED IN EARTHQUAKE
RESPONSES OF BUILDINGS

MOTIVATION: In a cursory survey of several

textbooks on structural dynamics, it can be seen _ UNDAWPED _ DAMPED:1%
that beating effects have not been included in ARV
their scopes. On the other hand, as more
earthquake response records from instrumented
buildings became available, it also became _ - DL
evident that the beating phenomenon is © ey % oy P
common.
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SIGNIFICANCE OF BEATING OBSERVED IN EARTHQUAKE
RESPONSES OF BUILDINGS

Figure 1 demonstrates two simple
harmonic signals with constant frequencies
(0.45 and 0.57 Hz) and with and without
light damping ratio of 1 %, are summed to

demonstrate the beating phenomenon. e mes

The “beat frequency” (fb) - as it is generally referred to in acoustical physics
- Is denoted by the absolute value of the differences in frequencies (F1=12)
that cause the phenomenon [https://en.wikipedia.org/wiKi/Beat (AcCoustics)}:
The “beating period” (Tb) is twice the inverse of beat frequency CLb=2/1b)
as shown in Figure 1. Throughout this paper, the beating period will be
computed by the following equation (see also Boroschek and Mahin, 1991):
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SIGNIFICANCE OF BEATING OBSERVED IN EARTHQUAKE
RESPONSES OF BUILDINGS

Objective: Beating observed in the recorded responses of a tall building
In Japan and another in the U.S. are examined In this paper.

What is beating?: (1) Beating is a periodic vibrational behavior caused
by distinctive coupling between translational and torsional modes that
may have close frequencies, and is prominent in the prolonged
resonant responses of lightly—damped structures. (2) Resonance caused
by site effects also contributes to accentuating the beating effect.

Methods: Spectral analyses and system identification techniques are
used herein to quantify the periods and amplitudes of the beating
effects from the strong motion recordings of the two buildings.

Why study?: Quantification of beating effects is a first step towards
determining remedial actions to improve resilient building

performance to strong earthguake-induced shaking.



EXAMPLE(1a): SCCOB: A 13-story, 56 mtall, 51 m x 51 m
In plan, moment-resisting, steel-framed structure [ built In
1970 according to UBC 1970 provisions]. There are 6 column
lines in each direction.




EXAMPLE (1b): SCCOB: NOTE FREQ & DAMPING

00| FEarthquake |
| |LomaPricta| MorganHill| Mt. Lewis |
| Peak Acceleration (G) Roof(NS) 1034 |  ]032 |
| |Roof(BW)  J034 017  ]037 |
| |Bae(NS)  Jolo 004 004 |
| |Base®W) 009 004 004 |
| | Frequemcy[f(Hz)]|045  [046 040 |
| [ Damping[g(w] 270  Jol7  J212
| [Damping[gw)] 169 170|172

RESPONSE AT ROOF OF SCCOB: CH6 (NS)

ORGAN HILL EQ. (1984)

MT. LEWIS EQ. (1986)

LOMA PRIETA EQ. (1989)

TIME (SEC)

 Inherent low-damping of the building
» Closely-coupled torsional-translational mode that causes beating
« Basin effect and site characteristics MAY contribute to resonating excitation



Example2: 14-story BP Building in Anchorage. AK
Denali EQ of 11-02-2002 Mw=7.9, d=286 km.
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What Is beating effect?

Repetitively stored potential energy
during the coupled translational and
torsional deformations turns into
repetitive vibrational energy. Thus
periodic, repeating and resonating
motions ensue. The beating becomes
severe If the system is lightly
damped.




What are the implications of the
beating effect?

» Elongated shaking due to beating effect
takes its toll on the structural system —
particularly If the structure is brittle and old
(e.g. historical building).

 Repetitive shaking accentuates fatigue and
low-cycle fatigue.

 Beating cycles provide discomfort to
occupants.



Examples:

We are going to concentrate on two cases
(buildings) in this paper:

Case 1. SKS Building in Osaka during the
ohoku Event of March 11, 2011 (Mw9.0)

[Celebi, M., Okawa, 1., and Kashima, T., S. Koyama, and M. liba, 2014, Response of a tall building far from the epicenter of the
March 11, 2011 M=9.0 Great East Japan earthquake and its aftershocks, The Wiley Journal of The Structural Design of Tall and
Special Buildings. (2012 Published online in Wiley Online Library: wileyonlinelibrary.com/journal/tal). DOI:10.1002/tal.1047 and in
volume: 23, 427-441 (2014)]]

Case 2. Atwood Building in Anchorage, AK

[Celebi, M., 2006, Recorded Earthquake Responses from the Integrated Seismic Monitoring Network of the Atwood Building,
Anchorage, (AK), Earthquake Spectra, v.22, no.4, pp 847-864, November 2006
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Case 1:Building in Osaka Bay ~767 Km
from epicenter of March 11, 2011 main-
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THE BUILDING

JEVENT7

Image © 2011 TerraMetrics
Data ® 2011 MIRC/JHA
© 2011 Cnes/Spot Image
Data SIO, NOAA, U.S. Navy, NGA, GEBCO

36°46'20.74" N 135°27'26.85" E elev -3843 ft

« 256 m tall (55 stories+3 story basement)

«  Construction finished in 1995 (pre-1995 code,
pre-(KIK-NET/K-NET). Vertically irregular,
steel, moment-frame (rigid truss-beams/10
floor). No shear walls around elevator shafts

* 60-70 m long piles below foundation
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Before we go on, an important issue:Benefit of
continuous recording vs threshold base recording

CH32(EW) AT 62ND LEVEL

from threshold based

beating in ‘
Oteontiuous data
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Case 1: Site Amplifications

TRANSFER FUNCTION: BUILDING SITE & VICINITY
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Case 1. Amplitude Spectra & Transfer Function
Note: Narrow spectra implies low damping
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Case 1: Design Analysis, Spectral Analysis & System ldentification
Results (note: narrow amplitude spectra — low damping)

ORIENTATION X[229] Y[319] TORSION
MODES 1 | 2 | 3 1 | 2 | 3 1 | 2
ANALYSES DURING DESIGN
Freq(Hz) 1887 1724
[T(s)] [5.3] (58]
MAINSHOCK [EVENT 1] (Spectral Analy

Freq(HZ) 0.152 | 0.489 | 0.905 | 0.145 | 0.426
[T(s)] [6.58] | [2.06] | [1.11] | [6.90] | [2.34]

SYSTEM IDENTIFICATION
MAINSHOCK [EVENT 1] (System Identification)

Freq(Hz) 0.1524 | 0.4887 | N/A | 0.1447 [ 0.4264 | 0.7250
[T(s)] [6.56] | [2.05] [6.91] | [2.35] | [1.38]

Damping ( &) 0.012 | 0.020 0.016 | 0.001 | 0.020
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Case 2: Case Atwood Building in Anchorage, AK.

31

The Atwood Building - a 20-story, steel framed
building. |
Single story basement and a RC foundation w/o e R

AND

i — DOWNHOLE ARRAY/|
piles

130°x130’ (39.6 mx39.6m)in plan with 48°x48’
(14.6mx14.6m) in plan center steel shear walled
core. Designed according to 1979 UBC.

Site of the building: underlain by ~100-150 ft
(30.5-45.7m) thick soil layer known as
Bootlegger Cove Formation.



REPEATABILITY: 3 EARTHQUAKES
STRUCTURAL FREQUENCIES

ATWOOD BUILDING: NOV. 8, 2004, ROOF:CH30(NS) ATWOOD BUILDING: NOV. 8, 2004, ROOF:CH30(NS)
........ .;20_6 Sk T T T

5E 3 3%
FREQ (HZ)
ATWOOD BUILDING: FEB. 16, 2005, ROOF: CH30(NS)
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Case 2.ATWOOD BLDG: System Identification
6 April 2005: Tazlina Glacier EQ.,Mw4.9, d=189km
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Table 2. Dynamic characteristics determined by system identification (§=modal damping)

NS EW

f (Hz) T (s) & (%) f (Hz) T (s) & (%)

0.58 1.73 2.9 0.47 2.13 4.2
1.83 0.55 2.7 1.53 0.65 2.8

> 3.6 0.28 3.1 2.9 0.35 24
i”é 4.9 0.20 3.6 4.3 0.24 4.1
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REPEATABILITY: 3 EARTHQUAKES
BEATING EFFECT: T,=2T,T,/(T,-T,)

ATWOOD BUILDING: [CH30] NS THREE EVENTS ATWOOD BUILDING: [CH30] NS THREE EVENTS
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Translational Torsional Beating
fi Hz) | Ti(s) fi(Hz) | Tu(s) fy (Hz)
Combination 1 0.55 1.8 0.6 1.66 0.023
Combination 2 0.47 : 0.6 1.66 0.063
U Combination 3 0.47 : 0.55 1.82 0.037
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ATWOOD:INISKIN:ROOF:NS(CH30))

ACC.(CM/S/S)

Case 2: New Data: January 24,
2016 Iniskin EQ,
Mw7.1,d=262km
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Table 5. NS, EW and torsional modal frequencies and damping percentages computed by system identification.

Mode 1 Mode 2 Mode 3
f(Hz) & (%) f(Hz) f(Hz) & (%)
0.47 1.47 1.65 3.12 1.98
0.40 1.34 1.35 2.58 451
0.47 0.12 1.33 2.17 4.77
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Conclusions

 Although only two cases are presented in this
paper, beating effects are often observed In
records of prolonged responses of numerous tall or
mid-rise buildings. In this paper, we draw
attention to this real physical phenomenon that
was observed in a building in Japan and another In
the US. Quantification of the presence of beating
can stimulate finding solutions to eliminate it, or
to decrease the possible adverse effects that it may
cause.
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