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Engineering Big Data
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Immense Size and Volume > needs Parallel/Cloud computing
Complexinter-relations > advanced statistics/Al

High dimensionality (Multiple dimensions/Many variables)

High velocity (notin current study), i.e. rapid change of data
Pursue “Data-driven” discovery

Data may foretell “hidden” relations or problematic issues

Difference from Traditional Statistical Methods

bk w b=

A few variables (predictors)to describe a response
Simple relations

Needs a pre-specifiedrelation among variables
Statistical methods are often used to confirmthe pre-definedrelations

Hard to find “hidden” relations or problems
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Why are Eng. Big Data important for Qur Fields

1. Global communities have established DB: e.g., RCSW DB of
« ACI 445-B Shear Wall Database: https://datacenterhub.org/resources /142

SERIES Wall Database: hitps://datacenterhub.org/resources/355 High velocity (not in
current study), i.e. rapid change of data

BRI Wall Database: https://datacenterhub.org /resources /14087

2. Our DB share the Big Data characteristics (size, complexity, etc.)
3. Engineering community seeks to foresee hidden problems
4. Sirong needfor Big Data-oriented methods, algorithms, etc.

5. Underdeveloped couniries may have different DB and practices
6. The proposed methods are cost-effective compared to real tests
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Introduction: Statistical Issues of Community DB

Sparseness and Biasness
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Revealed from 470 real experiments of RC shear wall database (collected from
NEESHub, international reports, and literature).

R: Rectangular RCSW

T: T-shaped RCSW

B: Barbell-shaped RCSW

I: I-shaped RCSW

B-O: Barbell-shaped wall with Opening
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Introduction : High Dimensionality & Interpretability

Increased interpretability
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Change in the interpretability of database with increasing dimensionality:

(a) two-dimensional (2D) scatter plot of standardized f, (steel yield strength of
longitudinal bars) and F,,,;, (maximum shear force)
(b) 3D plot of F,,,, the standardized f,, and the standardized f.’ (concrete strength)
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Generalized Additive Model (GAM)

Pioneering works of Hastie and Tibshirani (1990).

A non-parametric extension of generalized linear model
Covariates enter into the model through smooth functions
No need for pre-definedrelation among variables

Focus on flexible, powerful prediction capability

o AL N

General form of GAM is given by (Wood 2006)
g(/"l) — fl(xll) -+ fz(le) + f3(x3i) + .-

Where g is a smooth link function,  fis a smooth function

u; = E(Y;|x;)

Yi is i-th response (from exponential family distributions)
xi is i-th vector of data points

In our case, Yiis the i-th RC shear wall (RCSW)’s maximum force

x; = {length;, height;, AxialForce; ...}



GAM: Cubic Regression Spline

Fitting of the model is done by maximizing likelihood with a penalty term of
A[[f"(x)]?dx  where A=smoothing parameter

Two popular smooth functions:
Cubic Regression Spline (CRS) & Thin Plate Regression Spline (TPRS)

(1) Cubic Regression Spline (CRS)

* Constructed by connecting cubic polynomial sections.
« “Knot” locations are pre-selected

* e.g., cubic spline functions of Gu (2013) are given by

b,(x) =1,b,(x) = x,and b;;,(x) = R(x,x;) fori =1,2,---,p — 2
where
R(x,x*)=[(x"—1/2)? —1/12][(x — 1/2)? — 1/12]/4
—[(|x = x*| = 1/12)* — 1/2(|x — x*| — 1/12)? + 7/240]/24

x* =the know location
Y



GAM: Thin Plate Regression Spline

(2) Thin Plate Regression Spline (TPRS)
* Suitable for many covariates
“Knot-free”

Computationally more expensive than CRS
Thin spline functions f (Duchon, 1977) are found by minimizing

ly — flI* + AJ,,a(f) where J,,; means “wiggliness” of f

m! amMmf 2
.]"ld = f”'fRdZv1+---+vd U1! . (ax;’ ) dxl "’dxd

v

Example of thin plate spline basis function using 2 covariates (cited from Wood 2006)
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GAM’s Flexibility

Regression type
Black = Linear; Red =Parabolic; Green = GAM&CRS; Yellow = GAM&TPRS]

(a) hb [m] vs Fmax [N] (b) height [m] vs Fmax [N]

max force
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Example of one-dimensional regressions of 470 real RC wall data:

(@) hb (thickness of boundary element) versus Fmax
(b) wall height versus Fmax.
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Metrics for Prediction Quality

Three metrics are used to compare predictive power of the statistical
methods (as done by Machine Learning-based works of Kamdar et al. 2016)

The larger value, the more accurate prediction.

1. Cross-Validation Error (CVE) Ratio: CVE/CVED

_ 1y i i 2
CVE = ﬁzi:l(yexperiment - }’predicted)

_ 1N (i :
CVEb N izl(yexperiment o )’mean,predicted)

2. Pearson Coefficient: O

COU(}’predicted- }’experiment)

p:

a . X a "
Ypredicted Yexperiment

3. Coefficient of Determination: R?

: 2
N i
21’:1 (yexperiment ‘Ymean,predicted)

R?=1-

; ; 2
N i gl
zi=1(ye):periment ypredicted)



Prediction with GAM using Cross-Validation

Three Steps of Cross-Validation

1. Remove a specimen (data point)
2. Learn the remaining specimens (remaining data)
3. Predict the removed specimen
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Fredicted

Overall Prediction Power of GAM

* Used the “best” model of GAM (shall be discussed next sections)
GAM setting: logarithmic link, Gamma distribution of response

« Two smooth functions, CRS and TRPS, were separately used
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Q-Q plot of real experimental data and the predicted value
(@) Using GAM-CRS
(b) Using GAM-TPRS




Construct a “Best” GAM

Which variables must be included in the GAM for best prediction?

Number of total possible combinations: e.g., when 4 variables are used
10!

41(10 — 4)!
For completely Data-Driven Prediction,

* No pre-specified relation among variables
* No prejudice on importance of each variable

=210

* 1 target response: maximum shear resistance, F,,,,

e Start with 10 variables from DB 1. axial force ratio (denoted by afr)
2. wall thickness (thickness)

3. boundary element’s thickness (hb)

4. boundary element’s width (bb)

5. wall height (height)

6. wall length (Iength)

7. primary reinforcing bar’s yield strength (fy)

8. bar diameter (dia)

9. concrete compressive strength (fc)

1

0. boundary element reinforcement ratio (bderr)
®14



Constructing a “Best” GAM

Best GAMs using CRS for a given number of variables

# of #of 1 CVE/ s
L - _ Pear: 2
Vari. Comb. Best combination of wauables(p va ues) CVE, earson R
2 45 height(6.24e-11)  hb(1.85e-05) 12.24 0.958 0.918
3 120 height(<2e-16) hb(3.71e-11) dia(0.00272) 16.39 0.969 0.939
ight(<2e- 1le- 51e-
4 210 h.elght( e-16) afr(3.11e-13) hb(5.51e-10) 21.00 0.976 0.952
dia(1.57e-08)
height(<2e-16) afr(1.73e-13) dia(5.51e-08)
5 252 - 22.46 0.978 0.955
hb(5.59e-06) fc(0.292)
afr(<2e-16) thickness(<2e-16) hb(1.27e-11)
6 210 : . 26.21 0.981 0.962
height(9.51e-08) fy(7.01e-08) dia(3.26e-06)
afr(<2e-16) thickness(<2e-16) hb(1.76e-11)
7 120 height(1.01e-07)  fy(2.69e-07) dia(4.00e-06) 25.75 0.981 0.961
fc(0.719)
afr(<2e-16) height(<2e-16) fy(<2e-16)
8 45 bb(3.07e-10) length(6.60e-09) thickness(1.9e-08) | 24.64 0.980 0.959
dia(7.38e-05) hb(0.163)
afr(<2e-16) height(<2e-16) fy(<2e-16)
9 10 bb(7.85e-10) thickness(5.37e-08) length(1.00e-08) 23.61 0.979 0.958
dia(9.89e-05) hb(0.171) fc(0.707)
afr(<2e-16) height(<2e-16) fy(1.15e-13)
5.63e- 2.58e- ick 2 Oe-
10 1 bF)( 63e-08) length(2.58e-07) thickness(2.0e-06) 4.63 0.918 0.784
dia(0.00999) hb(0.10544) bderr(0.64389)
fc(0.72648)




Constructing a “Best” GAM
Best GAMs using TPRS for a given number of variables

#of

# of

CVE/

Pearso

Vari. Comb. Best combination of variables (p-Values) CVE, n R
2 45 length(5.91e-11)  height(1.59e-09) 12.22 0.958 0.918
3 120 length(<2e-16) dia(<2e-16) afr(2.11e-11) 15.70 0.968 0.936
<2e- icht(<2e- .18e-

4 210 le-ngth( 2e-16) height(<2e-16) afr(1.18e-13) 20.89 0.976 0.952
dia(1.51e-11)
afr(<2e-16) thickness(2.06e-09)  fy(3.24e-07) _

5 252 23.32 0.978 0.957
bderr(1.43e-06) length(0.00033)
afr(<2e-16) thickness(3.76e-09)  fy(9.12e-07)

6 210 22.92 0.978 0.956
bderr(2.17e-06) length(0.00044) fc(0.84103)
afr(<2e-16) height(4.53e-05) £y(0.000306)

7 120 thickness(6e-04)  dia(0.002263) hb(0.010451) 24.33 0.979 0.959
length(0.211003)
afr(<2e-16) height(<2e-16) fy(6.41e-06)

8 45 length(1.40e-05)  thickness(0.0152) hb(0.1574) 22.97 0.979 0.956
dia(0.2323) bderr(0.6818)
afr(<2e-16) length(<2e-16) bb(5.34e-08)

9 10 fy(1.21e-07) height(0.000944) bderr(0.018341) 23.93 0.979 0.958
dia(0.730411) thickness(0.767511)  £c(0.792632)
afr(<2e-16) bb(6.25e-05) height(3.68e-04)

2 ia(0.2

10 1 fy(0.000865) hb.(0.00134-) dia(0.248087) 14.88 0.968 0.033
length(0.699968) thickness(0.77149) bderr(0.875868)
fc(0.888840)




Constructing a “Best” GAM

Variations of three metrics with varying number of variables
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Engineering Interpretation from GAM predictions

Without any prejudice and pre-specified relationship among variables

* Both methods identify the same five variables as indispensable to
accurate prediction

* Interestingly, the axial force ratio is identified as the most
indispensable variable for rectangular RCSW prediction, which is
aligned with the recent in-depth researches of (Wallace et al. 2012;
Westenenk et al. 2012)

The proposed approach may help engineers and researchers to identify
hidden roles of some ignored factors or even problematic issues



Actuator force [kKN]

Actuator force [kKN]

GAM versus High-Precision Computer Simulations

6 RC Wall tests (WSH series of Dazio et al. 2009)
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GAM versus High-Precision Computer Simulation

High-precision computer simulation can be used to enrich
engineering Big Data for better prediction and investigations
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Super Computing using R & Rmpi

Problem-oriented cyclic

Serial and Parallel codes will be parallel task allocation

available of authors’ paper
(under review by Earthquake Spectra)
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Conclusion

1.

Highly flexible and general; can resolve high-dimensionality and
complexity of engineering Big Data.

In light of economic benefit, this approach may aid EQE in
underdeveloped countries as well as global engineers and researchers

To accelerate this transition, global data sharing, merging, utilization
are significant

Convergence among Experiments, Engineering and BigData is critical

In next 5-10 years

The Big Data-oriented approaches will help

Engineers to quickly check their designs

Researchers to identify hidden problems and unravel relations
Reduce unnecessary experiments

Better focus on innovative new experiments
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