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■ Back ground and Outline of the Research Project 

１．Back ground and motivation of the research 
→ Recognition of the small vibration control performance

of many application projects with dampers

２.  Theoretical study funded from 2011 to 2013
by  Japan Society for Promotion of Science 
→ The second order dynamic equation does not 

properly explain the damping performance 

３.  Research project currently funded by Tokyu Construction Co.
→ Shaking table tests of a frame structure with

dampers and laminated rubber bearings  



Part A

Why passive dampers do not work well ?



Second order dynamic model              Resonance curve 

■ Because the model in the text book is insufficient. 

 : damping factor

 :  natural frequency



■ Weak point of the conventional dynamic model

〇 As we increase the damping coefficient, the structure’s 
stiffness becomes large as a result.  
The natural frequency of a system with high stiffness 
naturally becomes higher, which is our common sense. 

〇 The formula from the second order dynamic model tells us 
the natural frequency is given by

which is against our common sense. 



■ Why this happen ?

〇Eigenvalue of the second order differential equation can 
explain exactly two physical phenomena.

One:  The amplitude does not influence the natural period.

Two:  The amplitude decreases as the time goes on.

〇 There is at least one more to explain….

Three: As the damping factor increases, the stiffness of the          
system increases. 

As a result, the mode frequency becomes higher. 



■ Why this happen ?

〇Eigenvalue of the third order differential equation can 
explain three physical phenomena at one time. 

One:  The amplitude does not influence the natural period.

Two:  The amplitude decreases as the time goes on.

Three: As the damping coefficient increases,  the mode 
frequency becomes higher. 



■ Third order differential equation model

ωo < ωeq < ω∞
Cd = 0.0      < Ｃopt          < Cd = ∞
  0.0      <       max >      0.0 



■ Small model test under random excitation 



◇ Test result from a small model on the shaking table 
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Part A

Conclusion

It is impossible to achieve damping factor more than
5 % by means of implementing  damping devices
into a relatively large building structure. 



Part B

How can we achieve high damping performance ?



Solution 

If we want to improve damping performance, we should
increase the stiffness of the structure by installing damping 
devices. 



ω ωo ＜ ωopt ＜ ω∞
 0.0                   max       0.0

■ Study of damper location  



〇 The third order differential equation tells us..

If you wish to get high damping performance,
you should implement not only damping devices 

but also structure members at the same time. 

Because you can not increase damping factor independently,
in other words the damping factor is related to stiffness. 

■ Study of damper installation 



2

22

o

o


 

 

)2(2
1

2 



eq

2

22



 o

eq

○ Stiffness 
augmentation

○ Upper boundary 
of damping factor

〇 Frequency of the partially 
isolated structure

■ Evaluation of damping factor and natural frequency



ω ωo ＜ ωopt ＜ ω∞
 0.0                   max       0.0

■ Evaluation of damping factor and natural frequency



■ Configuration of damper and rubber bearing



■ Steel frame model 



■ Steel frame model 
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■ Ground floor of the steel model  



■ Steel frame model 



■ Damping performance evaluation



■ The result of real eigenvalue analysis

■ Ｘ direction  
If Cd = 0 , then 
ωo = ３０．３ rad/sec

If Cd = ∞, then
ω∞ = ３９．３ rad/sec

■ Y direction 
If  Cd = 0 , then
ωo = ２９．５ rad/sec

If Cd = ∞ , then 
ω∞ =   ３７．６ rad/sec



■ Eigenvalue analysis for both directions  

■ Ｘ direction damping factor

β ＝ ０．６８２

η ＝ ０．１１０

■ Ｙ direction damping factor

β ＝ ０．６２４

η ＝ ０．１００



■ Set up of the laminated rubber bearing



■ Laminated rubber bearing load-displacement property



■ Configuration the laminated rubber bearing



■ System equation of the frame matrix



■ System equation of the frame matrix



■ The damper dynamics
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■ The structure dynamics



■ Comprehensive model based on feedback control



■ Response displacement at Top floor with dampers

With damper coefficient 0.01KNsec/mmWith damper coefficient 0.50KNsec/mmWith damper coefficient 100KNsec/mm



■ CONCLUSIONS 

1. The third order differential equation is necessary for
damping evaluation in the design phase.

2. Damping factor can only be increased by implementing
structure member at the appropriate location.

3. The damping factor can be easily evaluated by stiffness
augmentation, which can be easily calculated by real
eigenvalue analysis.

4. The theoretical prediction has been verified by a quarter
size model on the shaking table test.
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