

12 Projects over 12 Years: Reflections from Implementing Low Damage Designs

... A Consultants' Point of View

Alistair Cattanach, Director Dunning Thornton Consultants Ltd, Wellington NZ

Why

The NZ public now understand disruption

Research to implementation – the difficulties

Which were/are more successful

Shed 13: Wellington Waterfront

CentrePort: The Customhouse

CentrePort The Customhouse

Parallel to Quay

Perpendicular to Quay

Te Toki a Rata: Victoria University of Wellington

Te Toki a Rata: Victoria University of Wellington

Royal Society: Wellington

Massey College of Creative Arts: Wellington

Massey College of Creative Arts: Wellington

tensioned at base of ground beam

Gisborne War Memorial Theatre

Huddart Parker

(a) Slotted beam end damage.

One Market Lane

Nelson Airport

Scion Hub: Rotorua

Diagrams and Communication

• Internally: simple tests of resilience

• Externally: mechanisms easier for others to understand

Scalability from Research

Detailing

Scalability from Research

• Strain to fracture

Scalability from Research

Buildability

"Rattle"

- Hard to estimate early in the process
- Essential to understand easy to **overestimate** performance

- Analysis time vs. Detailing time
- Simple tools most effective

Diaphragms and Connections

- Not Base Isolation!
- Imposed Rotations
- Imposed Dilations
- Loss of Continuity

DOWELLED EDGE BEAMS

ELASTIC EDGE BEAMS

SHORT SPAN COMPOSITE SLABS

Secondary Structures and Non-Structural Elements

- Proportion of Cost
- Communication and Education
- Modifications over time

Resonance

Conclusions

- Every structure should minimise seismic damage where practical
- It's not easy
- Many tools, procedures and precedents needed to educate