

Residual Capacity and Repairability of Earthquake-Damaged RC Beam Elements

Mehdi Sarrafzadeh, Kai Marder, Kenneth J. Elwood University of Auckland

> Polly Murray and Abbie Liel University of Colorado

13 November 2018 17th US-Japan-NZ Workshop on the Improvement of Structural Engineering and Resilience

16th US-Japan-NZ Workshop

Kumamoto vs Christchurch

Kumamoto

- Focus on strength and stiffness

Christchurch - Focus on ductility

QuakeCoRE

NZ Centre for Earthquake Resilience

Wellington buildings

- 14 buildings demolished
 5 decisions pending
- Opportunity!
- RC Perimeter Frame Structure
- Modern Seismic Design Standards
- Precast Flooring System
- 4 Beam-Column Joints Extracted for testing.

Cross Section of Extracted Units

Damage state – Beam hinging examples

Structural Response / Drift demands

0.3

0.2

0.1 DISPLACEMENT (m) 0 0.1 1.0-

-0.2

-0.3 L

. .

QuakeCoRE

NZ Centre for Earthquake Resilience

Beam rotation demands

Extracted beams

Test setup

Damage progression 1%stDutift

Kaikoura Demand

2.5% Drift

Max Crack Width 11 mm (10 mm residual)

6% Drift

Failure following opening of stirrup hooks

Load displacement

Load displacement

Load displacement

Future tests

Performance objectives

Vision 2000

Performance objectives

Immediate Occupancy	Most operations and functions can resume immediately. Structure safe for occupancy. Essential operations protected, non-essential operations disrupted. Repair required to restore some non-essential services. Damage is light.
Life Safe	Damage is moderate, but structure remains stable. Selected building systems, features, or contents may be protected from damage. Life safety is generally protected. Building may be evacuated following earthquake. Repair possible, but may be economically impractical.

Performance objectives - Repairability limit state?

ATC-145 – Post-EQ repair and designing for repairability

Thank you to our funders!

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

QuakeCoRE

NZ Centre for Earthquake Resilience *Te Hiranga Rū*

Questions?

MASSEY UNIVERSITY

Kaikoura Earthquake - Wellington

DemolishedUnder demolitionUnoccupied

(WCC 2018)

Christchurch Damage Statistics

223 RC Buildings over 2 stories (Kim et al. 2015)

Moment Frame Buildings

Shear Wall Buildings

Ouake<mark>CoRF</mark>

NZ Centre for Earthquake Resilience

Damage Ratio ≈ repair cost / replacement cost

Significant number of RC buildings with relatively low damage were demolished.

Residual Capacity Beam Tests

Kai Marder et al

- To be presented in next session

Loading protocol

Loading protocol

Damage \rightarrow Drift capacity?

■CYC \blacktriangle P-1 × LD-1 × P-2 = P-2-S □CYC-NOEQ

No relationship between crack widths and drift capacity.

→ Drift capacity correlated with number of sliding planes.

Drift Capacity - limited by sliding shear

OuakeCoRE

NZ Centre for Earthquake Resil

Stiffness - unrepaired

Stiffness – epoxy repair

Capacity - epoxy repair

Strength: Repaired > Undamaged **Drift capacity**: Repaired ~ Undamaged

Reduction in steel strain capacity

Duake

Reduction in steel strain capacity -Low-cycle fatigue

QuakeCoRE NZ Centre for Earthquake Resilience

Reduction in steel strain capacity -Low-cycle fatigue (beam test)

QuakeCoRE NZ Centre for Earthquake Resilience

Tayo Opabola et al

- To be presented in next session

Reduction in steel strain capacity - Strain ageing

Data: Restrepo-Posada et al (1994) and Loporcaro et al (2016)

Reduction in steel strain capacity - Strain ageing + LCF

Repairability Limit State

Definition:

- Maintain "original design Epoxy repair: performance characteristics"
 v after repair.
 - ➤Strength
 - Drift capacity
 - ➤ Stiffness
 - Simple steps toward repairability in conventional buildings:
 - ➢ Restrict bar buckling: s/d_b≤4
 - ➢Reduce ductility/drift → lower elongation and floor damage
 - ➤Use CIP floors

Similar Deformation Capacity if: - limited elongation - bar buckling restricted

Repairability Limit State

- Future challenges

- Component
 - Cycles and effective strain levels for different earthquake (sequences) and structures.
 - Low-cycle fatigue + strain ageing tests for $s/d_b = 4$
 - Stiffness of repaired columns and walls
 - Different repair methodologies
- Whole-of-building performance
 - Interaction and deformation compatibility with floors
 - What systems are more or less repairable?
 - Much more...

> 60% of Multi-story Reinforced Concrete Buildings Demolished