Guidelines for Design of Structures for Vertical Evacuation from Tsunamis

Prepared by
APPLIED TECHNOLOGY COUNCIL
201 Redwood Shores Pkwy, Suite 240
Redwood City, California 94065
www.ATCouncil.org

Prepared for
FEDERAL EMERGENCY MANAGEMENT AGENCY
National Earthquake Hazard Reduction Program

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
National Tsunami Hazard Mitigation Program

Michael Mahoney, FEMA Project Officer
Robert D. Hanson, FEMA Technical Monitor

ATC MANAGEMENT AND OVERSIGHT
Christopher Rojahn (Project Executive)
Jon A. Heintz (Project Manager)
William T. Holmes (Project Tech. Monitor)

PROJECT MANAGEMENT COMMITTEE
Steven Baldridge (Project Technical Director)
Frank Gonzalez
John Hooper
Ian N. Robertson
Timothy J. Walsh
Harry Yeh

PROJECT REVIEW PANEL
Christopher P. Jones* (Chair)
John Aho
George Crawford
Richard Eisner
Lesley Ewing
Michael Hornick
Chris Jonientz-Trisler
Marc L. Levitan
George Priest
Charles W. Roeder
Jay Wilson

*ATC Board Representative
Notice

Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the Department of Homeland Security’s Federal Emergency Management Agency (FEMA), the National Oceanic & Atmospheric Administration (NOAA), or the Applied Technology Council (ATC). Additionally, neither ATC, DHS, FEMA, NOAA, nor any of their employees, makes any warranty, expressed or implied, nor assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, or process included in this publication. Users of information from this publication assume all liability arising from such use.

Cover photographs provided courtesy of Magnusson Klemencic Associates, Seattle, Washington.
This publication was equally funded by the National Oceanic and Atmospheric Administration (NOAA), which leads the National Tsunami Hazard Mitigation Program (NTHMP) and by the Federal Emergency Management Agency (FEMA), which is responsible for the implementation portion of the National Earthquake Hazard Reduction Program (NEHRP).

FEMA initiated this project in September 2004 with a contract to the Applied Technology Council. The project was undertaken to address the need for guidance on how to build a structure that would be capable of resisting the extreme forces of both a tsunami and an earthquake. This question was driven by the fact that there are many communities along our nation’s west coast that are located on narrow spits of land and are vulnerable to a tsunami triggered by an earthquake on the Cascadia subduction zone, which could potentially generate a tsunami of 20 feet in elevation or more within 20 minutes. Given their location, it would be impossible to evacuate these communities in time, which could result in a significant loss of life. Many coastal communities subject to tsunami located in other parts of the country also have the same potential problem. In these cases, the only feasible alternative is vertical evacuation, using specially design, constructed and designated structures built to resist both tsunami and earthquake loads.

The significance of this issue came into sharp relief with the December 26, 2004 Sumatra earthquake and Indian Ocean tsunami. While this event resulted in a tremendous loss of life, this would have been even worse had not many people been able to take shelter in multi-story reinforced concrete buildings. Without realizing it, these survivors were among the first to demonstrate the concept of vertical evacuation from a tsunami.

This publication presents the following information:

- General information on the tsunami hazard and its history;
- Guidance on determining the tsunami hazard, including the need for tsunami depth and velocity on a site-specific basis;
- Different options for vertical evacuation from tsunamis;
- Determining tsunami and earthquake loads and structural design criteria necessary to address them; and,
- Structural design concepts and other considerations.
This publication is the first of two documents on this issue. The second, currently under development, will present information on how the use of this design guidance can be encouraged and adopted at the State and local levels.

FEMA is grateful to the Project Management Committee of Steve Baldridge, John Hooper, Ian Robertson, Tim Walsh, and Harry Yeh. We are also grateful to the Project Review Committee, the members of which are listed at the end of the document, and to the staff of the Applied Technology Council. Their hard work has provided this nation with a first document of its kind, a manual on how citizens may for the first time be able to survive a tsunami, one of the most terrifying natural hazards known.

– Federal Emergency Management Agency
In September 2004 the Applied Technology Council (ATC) was awarded a “Seismic and Multi-Hazard Technical Guidance Development and Support” contract (HSFEHQ-04-D-0641) by the Federal Emergency Management Agency (FEMA) to conduct a variety of tasks, including the development of design guidance for special facilities for vertical evacuation from tsunamis, which ATC designated the ATC-64 Project. The effort was co-funded by FEMA and the National Oceanic and Atmospheric Administration (NOAA).

The developmental process involved a variety of activities including review of relevant research and state-of-the-practice documentation and literature, preparation of technical guidance and approaches for tsunami-resistant design, identification of relevant tsunami loads and applicable design criteria, development of methods to calculate tsunami loading, and identification of desired architectural and structural system attributes for vertical evacuation facilities.

The resulting guidance for design of special facilities for vertical evacuation from tsunami, as presented herein, addresses a range of relevant issues. Chapter 1 defines the scope and limitations of the guidance. Chapter 2 provides background information on tsunami effects and their potential impacts on buildings in coastal communities. Chapters 3 through 7 provide design guidance on characterization of tsunami hazard, choosing between various options for vertical evacuation structures, locating and sizing vertical evacuation structures, estimation of tsunami load effects, structural design criteria, and design concepts and other considerations. The document concludes with a series of appendices that provide supplemental information, including examples of vertical evacuation structures from Japan, example tsunami load calculations, a community design example, development of impact load equations, and background on maximum flow velocity and momentum flux in the tsunami runup zone.

ATC is indebted to the members of the ATC-64 Project Team who participated in the development of this document. The Project Management Committee, consisting of Steven Baldridge (Project Technical Director), Frank Gonzalez (who participated in early portions of the project), John Hooper, Ian Robertson, Tim Walsh, and Harry Yeh, were responsible for the development of the technical criteria, design guidance, and related recommendations. Technical review and comment at critical developmental
stages were provided by the Project Review Panel, consisting of Christopher
Jones (Chair and ATC Board Representative), John Aho, George Crawford,
Richard Eisner, Lesley Ewing, Michael Hornick, Chris Jonientz-Trisler,
Mark Levitan, George Priest, Charles Roeder, and Jay Wilson. Peter N.
Mork and Bernadette Hadnagy provided ATC report production services.
The affiliations of these individuals are provided in the list of Project
Participants.

ATC also gratefully acknowledges the input and guidance provided by
Michael Mahoney (FEMA Project Officer), Robert Hanson (FEMA
Technical Monitor), and William Holmes (ATC Project Technical Monitor).

Jon A. Heintz Christopher Rojahn
ATC Director of Projects ATC Executive Director
Table of Contents

Foreword .. iii
Preface .. v
List of Figures .. xi
List of Tables ... xv

1. INTRODUCTION ...1
 1.1 Objectives and Scope ...1
 1.2 Deciding to Construct a Vertical Evacuation Structure2
 1.2.1 Tsunami Hazard versus Risk ..2
 1.2.2 Decision-Making and Design Process2
 1.3 Limitations ...4
 1.4 Organization ..5

2. BACKGROUND ...7
 2.1 General ...7
 2.1.1 Historic Tsunami Activity ..7
 2.1.2 Behaviors and Characteristics of Tsunamis10
 2.2 Tsunami Effects on Buildings ...16
 2.2.1 Historic Data on Tsunami Effects16
 2.2.2 Observations from the Indian Ocean Tsunami19
 2.2.3 Observations from Hurricane Katrina23
 2.2.4 Implications for Tsunami-Resistant Design28

3. TSUNAMI HAZARD ASSESSMENT ... 31
 3.1 Current Tsunami Modeling and Inundation Mapping 31
 3.2 The NOAA Tsunami Program: Forecast Modeling and Mapping 32
 3.3 The National Tsunami Hazard Mitigation Program: Credible Worst-Case Scenarios ... 34
 3.4 The FEMA Map Modernization Program: Probabilistic Tsunami Hazard Assessments ... 37
 3.5 Limitations in Available Modeling and Mapping Products 40
 3.6 Hazard Quantification for Design of Tsunami Vertical Evacuation Structures ... 40
 3.7 Recommendations to Improve Tsunami Hazard Assessment 42

4. VERTICAL EVACUATION OPTIONS .. 43
 4.1 Vertical Evacuation Considerations .. 43
 4.1.1 Single-Purpose Facilities .. 43
 4.1.2 Multi-Purpose Facilities ... 44
 4.1.3 Multi-Hazard Considerations ... 44
 4.2 Vertical Evacuation Concepts .. 45
 4.2.1 Existing High Ground ... 45
 4.2.2 Soil Berms .. 46
4.2.3 Parking Garages ... 46
4.2.4 Community Facilities ... 47
4.2.5 Commercial Facilities .. 47
4.2.6 School Facilities ... 48
4.2.7 Existing Buildings .. 49

5. SITING, SPACING, SIZING AND ELEVATION
 CONSIDERATIONS .. 51
5.1 Siting Considerations ... 51
 5.1.1 Warning, Travel Time, and Spacing 51
5.2 Sizing Considerations ... 56
 5.2.1 Services and Occupancy Duration 57
5.2.2 Square Footage Recommendations from Available
 Sheltering Guidelines ... 57
 5.2.3 Recommended Minimum Square Footage for
 Short-Term Refuge from Tsunamis ... 59
5.3 Elevation Considerations .. 59
5.4 Size of Vertical Evacuation Structures ... 60

6. LOAD DETERMINATION AND STRUCTURAL DESIGN
 CRITERIA .. 61
6.1 Currently Available Structural Design Criteria 61
 6.1.1 Current U.S. Codes, Standards, and Guidelines 61
6.1.2 Summary of Current Design Requirements 63
6.1.3 Limitations in Available Flood Design Criteria
 Relative to Tsunami Loading ... 64
6.2 Performance Objectives .. 65
 6.2.1 Tsunami Performance Objective 66
6.2.2 Seismic and Wind Performance Objectives 67
6.3 Earthquake Loading ... 67
 6.3.1 Near-Source-Generated Tsunamis 68
6.3.2 Far-Source-Generated Tsunamis...................................... 68
6.4 Wind Loading ... 69
6.5 Tsunami Loading .. 69
 6.5.1 Key Assumptions for Estimating Tsunami Load
 Effects ... 69
 6.5.2 Hydrostatic Forces ... 70
 6.5.3 Buoyant Forces .. 71
 6.5.4 Hydrodynamic Forces ... 72
 6.5.5 Impulsive Forces ... 74
 6.5.6 Debris Impact Forces .. 75
 6.5.7 Damming of Waterborne Debris 78
 6.5.8 Uplift Forces on Elevated Floors 78
 6.5.9 Additional Gravity Loads on Elevated Floors 80
6.6 Combination of Tsunami Forces ... 81
 6.6.1 Tsunami Force Combinations on the Overall
 Structure .. 82
6.6.2 Tsunami Force Combinations on Individual
 Components .. 84
6.7 Load Combinations ... 85
6.8 Member Capacities and Strength Design Considerations 86
6.9 Progressive Collapse Considerations 86
 6.9.1 Tie Force Strategy .. 86
 6.9.2 Missing Column Strategy .. 88

7. STRUCTURAL DESIGN CONCEPTS AND ADDITIONAL CONSIDERATIONS ... 91
7.1 Attributes of Tsunami-Resistant Structures 91
7.2 Structural Considerations for Tsunami Load Effects 91
 7.2.1 Foundation / Scour Design Concepts 92
 7.2.2 Breakaway Wall Concepts .. 93
7.3 Concepts for Modifying and Retrofitting Existing Structures 95
7.4 Permitting and Quality Assurance for Vertical Evacuation Structures ... 96
 7.4.1 Permitting and Code Compliance 96
 7.4.2 Peer Review ... 96
 7.4.3 Quality Assurance / Quality Control 97
7.5 Planning Considerations for Vertical Evacuation Structures 97
7.6 Cost Considerations for Vertical Evacuation Structures 98

APPENDIX A – VERTICAL EVACUATION STRUCTURE EXAMPLES FROM JAPAN ... 101

APPENDIX B – COMMUNITY DESIGN EXAMPLE 107
 B.1 Site 1 Example: Escape Berm ... 110
 B.2 Site 2 Example: Multi-Use Structure 112

APPENDIX C – EXAMPLE CALCULATIONS .. 117
 C.1 Inundation Depth .. 117
 C.2 Hydrostatic and Buoyant Forces .. 118
 C.3 Hydrodynamic and Impulsive Forces 118
 C.4 Impact Force ... 120
 C.5 Damming Effect of Waterborne Debris 121
 C.6 Hydrodynamic Uplift Forces .. 122

APPENDIX D – BACKGROUND INFORMATION ON IMPACT LOAD CALCULATIONS ... 123
 D.1 Available Models for Impact Loads 123
 D.2 Summary and Discussion .. 127

APPENDIX E – MAXIMUM FLOW VELOCITY AND MOMENTUM FLUX IN THE TSUNAMI RUNUP ZONE 131
 E.1 Flow Velocity ... 131
 E.2 Momentum Flux .. 134

GLOSSARY ... 135
REFERENCES .. 145
PROJECT PARTICIPANTS ... 157