Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters (ii) Maintenance and Recovery of Functionality in Urban Infrastructures

# Behavior of Structural Walls of 1/3-Scale 6-Story Reinforced Concrete Building in Shaking Table Tests

Minehiro Nishiyama and Yuki Idosako - Kyoto University

Masanobu Sakashita - Building research institute

Kuniyoshi Sugimoto - Yokohama National University

Yasuhiko Masuda and Hideo Katsumata - Obayashi Corporation

# Background

- buildings as a target
  - low- to middle-rise apartment buildings with open-first-story, which are designed according to the current structural design code
    - high demand for parking space and stores at the first floor
    - buildings designed by allowable stress design and ultimate strength design
    - buildings with structural walls and non-structural walls



Fig. 10. A pre-1981 apartment building that collapsed at the soft first story.

#### PERFORMANCE OF REINFORCED CONCRETE BUILDINGS

Damage to buildings by the earthquake was much more severe in buildings built before the 1971 code revision took effect. The investigation conducted by the AU Kinki Branch revealed that in the Chuo Ward of Kobe City, the center of Kobe, 18 reinforced or steel-encased reinforced concrete buildings constructed before 1971 collapsed or suffered severe damage (see Fig. 9). On the other hand, only two of those buildings built between 1971 and 1981 were found collapsed or severely damaged. No concrete buildings built after the 1981 revision collapsed.



# Acknowledgement

 the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters:

 (ii) Maintenance and Recovery of Functionality in Urban Infrastructures

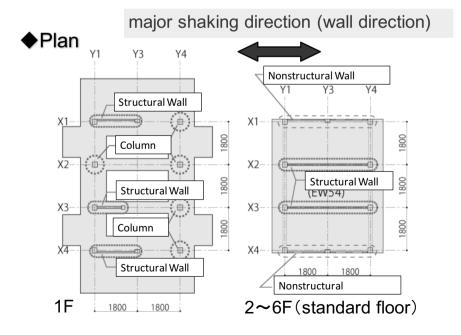
by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)

Fig. 11. A pre-1981 apartment building that collapsed at the soft first story.



PCI Journal July/August 1995

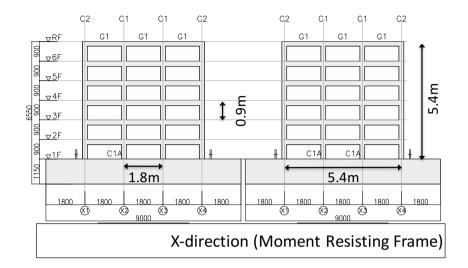
#### Collapse of Soft First Story


Fig. 13. A post-1981 apartment building that collapsed at the soft first story.

# Objectives

- how do RC buildings collapse?
- how do we define the collapse, and safety or collpase margin?
- how can we predict the collapse?
- how can we estimate the capacity at collapse?
- how large margin of safety to failure over the design capacity to be given by the current design procedure is expected?
- how can we estimate stiffness and capacity of frames with non-structural walls?
- how can we estimate the capacity of structural walls under bi-directional loading?

- Shaking table test on a 1/3-scale 6-story reinforced concrete building
- Numerical analysis to capture the torsional behavior of the building and sliding observed at the bottom of the structural walls






### Contents

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                   | $ \begin{array}{cccc} C1 & C1 \\ \textcircled{0} & \textcircled{0} & \textcircled{0} \\ \hline C2 & \hline \end{array} $ |  |
|-------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
|                                                       | EW54                              | EW54                                                                                                                     |  |
|                                                       | EW54                              | EW54                                                                                                                     |  |
| €₩_54 • • • ₩₹4₩                                      | EW54                              | EW54                                                                                                                     |  |
|                                                       | EW54                              | EW54                                                                                                                     |  |
|                                                       | EW54                              | EW54                                                                                                                     |  |
| walls structurally separated                          | EW90 C4                           |                                                                                                                          |  |
| from bottom beam and columi                           | ns                                |                                                                                                                          |  |
| 750 600 1800 1800 600 750                             | 1100<br>750 600 1800 600 1200 600 | 750 750 600 3600 600 750                                                                                                 |  |
| 4800                                                  | 4800                              | 4800                                                                                                                     |  |
|                                                       | Prototype                         | 1/3-scale test unit                                                                                                      |  |
| Y (wall) direction                                    | 6m x 2                            | 1.8m x 2                                                                                                                 |  |
| X (MRF) direction                                     | 6.2m x 3                          | 1.8m x 3                                                                                                                 |  |
| Floor area [m <sup>2</sup> ]                          | 293                               | 26.4                                                                                                                     |  |
| Total weight [kN]                                     | 26470                             | 1988                                                                                                                     |  |
| Weight of test unit [kN]                              | -                                 | 514                                                                                                                      |  |
| Total additional weight [kN]                          | _                                 | 1474                                                                                                                     |  |
| Additional mass [kN/story]                            |                                   | 246                                                                                                                      |  |

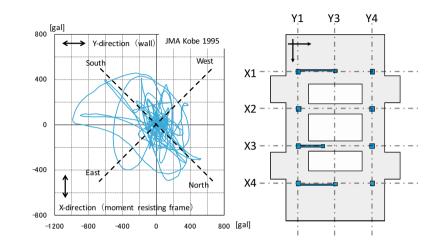






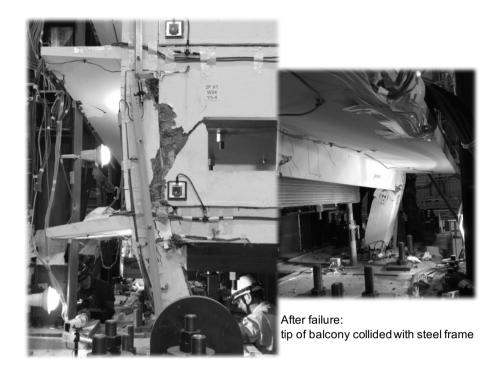


### Input waves and responses

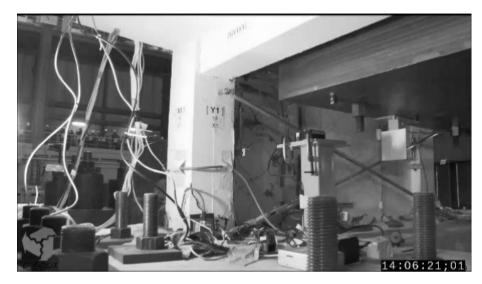

| Day    | Ratio to the<br>original PGA | $Q_B \ \mathrm{[kn]}$ | $C_B$ | $R_{1max}$ [rad.] |
|--------|------------------------------|-----------------------|-------|-------------------|
| Day1   | 10%                          | 140.4                 | 0.08  | 1/12857           |
|        | 40%                          | 769.1                 | 0.42  | 1/2500            |
|        | 55%                          | 1212                  | 0.66  | 1/882             |
|        | 70%                          | 1342                  | 0.73  | 1/629             |
| Day2   | 55%                          | 1029                  | 0.56  | 1/756             |
|        | 70%                          | 1342                  | 0.73  | 1/536             |
|        | 100%                         | 1975                  | 1.08  | 1/149             |
| Day3 - | 55%                          | 1373                  | 0.75  | 1/201             |
|        | 120%                         | 2160                  | 1.18  | 1/37              |
|        | 140%                         | 1747                  | 0.95  | 1/13              |
|        | 140%                         | 1161                  | 0.63  | 1/11              |
|        | Takatori 120%                | 1506                  | 0.82  | 1/6               |

 $Q_B$ : base shear response [kN],  $C_B$ : base shear coefficient,

R<sub>1max</sub>: max. story drift angle [rad]


#### ◆Input Wave

Contracted by a factor of 1/V3.3 in time by acceleration law JMA Kobe 1995 + JR Takatori 1995 (for the last run)

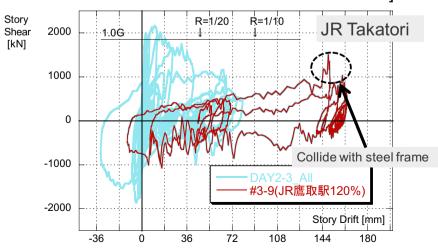



#3-5(JMA Kobe 140%-1) 1/2

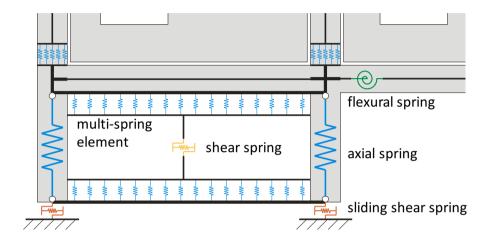




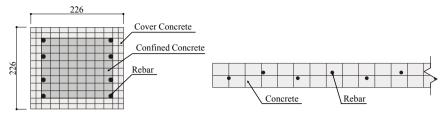
#3-5(JMA Kobe 140%-1) 1/2 wall in X-4 frame on the 1<sup>st</sup> floor



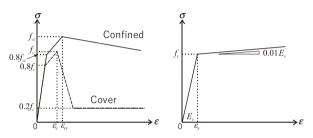

## #3-5(JMA Kobe 140%-1) 1/2 wall in X-2 frame on the 2nd floor



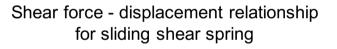

Test results: 1<sup>st</sup> story –wall direction-

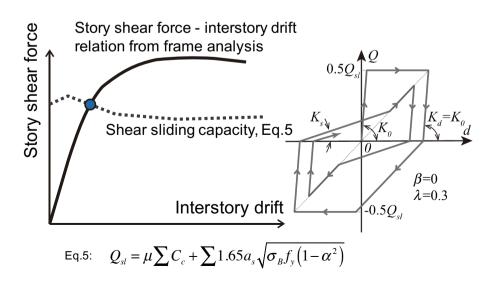

DAY2[JMA Kobe100%] ~ DAY3[JMA Kobe120% ~140%~140%~JR Takatori120%]

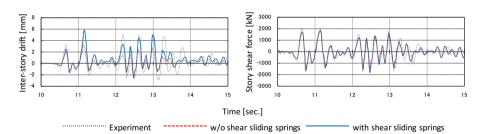


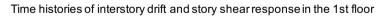

#### Numerical analysis using multi-spring idealization for wall with sliding shear spring at the bottom

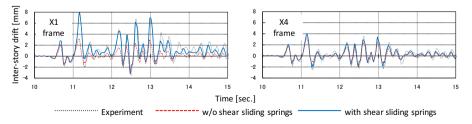



#### analytical modeling of columns and walls





Column and wall section elements for MS model





Stress-strain relationships for concrete and reinforcing bar











Interstory drift time histories of X-1 and X-4 frames

# Conclusions

- The shaking table test on a 1/3-scale 6-story reinforced concrete condominium was briefly outlined.
- The focus of this paper was primarily on the torsional behavior of the building and sliding observed at the bottom of the structural walls.
- Structural behavior of walls at large displacements were well captured by introducing the idealized sliding shear springs at the bottom of the walls in the analytical model.