NZ Loadings Standard (NZS1170.5) 2016 and 2018 Modifications to Structural Clauses for Increased Seismic Resilience

> Rob Jury - Beca Des Bull – HCG Gregory MacRae – University of Canterbury

17th U.S. – Japan – New Zealand Workshop on the Improvement of Structural Engineering and Resilience

Outline

- NZS 1170.5
 - Amendment 1 September 2016 but as yet uncited in Building Code
 - Amendment 2 under preparation due early 2019

The Impetus

- Christchurch Earthquake, 22 Feb 2011, M_w 6.2 (Canterbury Earthquake Sequence 2010 2016)
- Seddon Earthquake, 21 Jul 2013, M_w 6.5
- Lake Grassmere Earthquake, 16 Aug 2013, M_w 6.5
- Kaikoura Earthquake, 14 Nov 2016, M_w 7.8

The Impetus

- Christchurch Earthquake, 22 Feb 2011, M_w 6.2 (Canterbury Earthquake Sequence 2010 2016)
- Seddon Earthquake, 21 Jul 2013, M_w 6.5
- Lake Grassmere Earthquake, 16 Aug 2013, M_w 6.5
- Kaikoura Earthquake, 14 Nov 2016, M_w 7.8

Outline

• NZS 1170.5

- Amendment 1 September 2016 but as yet uncited in Building Code
- Amendment 2 under preparation due early 2019

Amendments Address

- Changes to Design Loadings
- Torsional Stability of Ductile Buildings
- Ratcheting
- Diaphragms
- Parts and Components
- Parts Supported on Ledges
- ULS Definition
- Requirements for Shaking Beyond ULS

Torsional Stability

Torsional Stability

Torsional Stability

Clarendon Building - Canterbury Earthquake Sequence

Clarendon swung about South frame: Regular ?

Clarendon Building - Observed Damage

- Unexpected non uniform nonlinear behaviour in "regular" lateral system
- Unexpected diaphragm damage
 - Cracking to slab due to frame elongation
 - Cracks/deformations = Loss of Seating = Potential Local Collapse!

N-W corner column

Corner pushed out

•Colddrawn wire mesh fractures

Torsional Stability – How to Address?

- Limit nonlinear behaviour in lateral system as a whole (μ < 1.25)
- Limit nonlinear deformation in lateral system making conservative assumptions on centre of rotation and effect of perpendicular lateral resistance
- Redundancy in lateral resistance (three or more lines of resistance reasonably well distributed with similar stiffness and strength (within 20%))
- Require perpendicular lateral system to carry torsion alone while remaining nominally ductile ($\mu < 1.25$)
- Relevance of the centre of strength vs centre of stiffness in a ductile system
- Torsion calculated assuming lateral system at overstrength

Ratcheting

Ratcheting

- Observed in ductile structures with greater lateral strength in one direction compared with the reverse direction
- Results in progressive increase in inelastic deformations in strong and/or long duration shaking
- Greater lateral displacements than expected occur in the reverse (weaker) direction
- Implications:
 - In severe cases can affect structural stability (higher ductility demands)
 - Significant effect on aspects sensitive to lateral deformations

Ratcheting - Structures Affected

- Eccentric gravity load resulting in lower provided strength in one direction compared with the other
- Non-symmetrical structural elements particularly L, U or T shaped shearwalls resulting in lower provided strength in one direction compared with the other
- Structures braced against side sway using tension braces or restrained buckling braces
- Moment resisting frames with lower strength in one direction compared with the other

Hotel Grand Chancellor – Observed Behaviour

	Lev 28	-		
Seismic Bending Moments	-			
Seismic Seismic Shears, Voe	<u>}</u> ,	1		15/
Gravity Shears V ⊚ + ⊔ and /ertical Earthquake Shears Vε	↓ ,		1	
	Lev 16			44
	Lev 15			
	Lev 14	-		_
Displacement Induced Seismic Floor Shears	Lev 12		11	W.
	Lev 10	*		
Gravity Shears V (D + L) and Vertical Earthquake Shears Ve	Lev 8	1	1	11 11
	Lev 6		-	-
Columns with Gravity	Lev 4		*	<
noitu Elat Slaba	Lev 2			
				1

"....gives the building a tendency to sway to the east by reducing lateral force resistance in this direction and increasing the lateral force resistance for displacement towards the west....". (Royal Commission Report Volume 2)

Ratcheting– How to Address?

- Feedback from Amendment 1 indicates that those provisions were not easy to understand and simplification proposed
- Definition of a Ratcheting Index, r_i :
 - $r_i = lateral resistance in stronger direction$

lateral resistance in reverse (weaker) direction

- Applied above the lowest level of expected inelastic behaviour
- Lateral resistance includes effect from eccentric gravity actions
- Offsets in plan to allow for building torsion may be ignored
- Designer can control

Ratcheting– How to Address?

- Still discussion around;
 - limiting values of r_i before NLTHA required (NLTHA definitely if $r_i > 1.5$)
 - relationship between $r_{\rm i}$ and the increase in lateral defections that should be designed for

Acknowledgements

Thank you