

The Serviceability of Resilient NZ Seismic Design

Didier Pettinga PhD CPEng

Holmes Consulting

November 14, 2018

Introduction

- Recent NZ earthquakes have driven a lot of thought on acceptable building seismic performance – generally focused on building systems and details of design philosophy rather than methodology
- Are we satisfactorily meeting Serviceability performance expectations?
- Are we reaching far enough into the structural design industry to have real effects?
- In review of the Japan Building Standard Law (BSL) and
- US Performance-Based Design

We find a complete reversal in the order of design to standard NZ practice

Kumamoto 2016 – a driver for reconsidering things

throughout Kumamoto Prefecture. It was found overall that modern RC buildings performed well, with patterns of damage which highlighted a philosophy of designing stiffer buildings with less of an emphasis on ductile behaviour. To explore this important difference in design practice, the Japanese Building

- The NZSEE reconnaissance team visit to Kumamoto in June 2016 gained a strong impression of what resilient seismic performance looks like in a major city
- The subsequent NZSEE Bulletin paper explored the key differences in RC seismic design philosophy
- ...and found some big differences in strength and stiffness outcomes
- Notably the limited spectrum reduction that is allowed using the D_s factor compared to μ or R
- Highlighted that reliable performance across a wide-range of buildings is upheld by limiting deformations

Methodology Comparisons

- Noted that that the Japan BSL sets out Level 1 Damage Limit (SLS) design as governing the initial design decisions on strength and stiffness to ensure elastic response for $\theta \le 0.5\%$
- With a design "check" of inelastic base shear capacity for Level 2 Ultimate Limit State performance
- This bears a remarkable similarity to the Performance-Based Design approach that has been adopted from the Tall Buildings Initiative on the US West Coast.

	Serviceability	Ultimate Limit State/Life- Safety
New Zealand NZS1170.5	No drift limit μ ≤ 1.25 Design check 25 yr RP with 5%	$\theta \le 2.5\%$ $\mu \le 6$ Primary design 500 yr RP with 5%
Japan BSL	$\theta \le 0.5\%$ $\mu = 1$ Elastic Primary Design \approx 50 yr RP with 5%	$\label{eq:theta} \begin{array}{l} \theta = 1.0\% \mbox{ (develop design base-shear)} \\ D_s \geq 0.3 \\ Design \mbox{ check} \\ \approx 500 \mbox{ yr RP with 5\%} \end{array}$
US PBD LATB Guidelines	$\theta \le 0.5\%$ $\mu \approx 1$ Elastic Primary Design 43 yr RP with 2.5%	$\theta \le 3.0\%$ Design check MCE _R = 2500 year RP

What is the outcome of SLS 50 year RP?

- In the NZ context it reduces the maximum design ductility that can be assumed in determining the design spectrum reduction for ULS
- Indicatively this is $\mu \leq 3$
- Which is interesting because that aligns with the likely maximum design ductility outcomes from Direct Displacement-Based Design

The Serviceability of Resilient Design

A Quick Comparison of Performance

- Building 1: ULS 500 yr RP Capacity Design μ = 4
- Building 2: ULS 500 yr RP Capacity
 Design μ = 2 (from DDBD)
- Building 3: SLS 50 year RP Capacity Design $\mu = 1$
- NLTH average of seven pairs

The Serviceability of Resilient Design

Looking for building stock improvements...

- A reversal of NZ typical design practice to emphasis SLS <u>design</u> might well offer the best penetration of improved seismic design through out the industry
 - The impact of the Kumomoto observations was the breadth of modern building typologies that had performed well it wasn't just the showcase buildings
- DDBD has brought positive outcomes where engineering firms have the capability to learn and apply the method
 - It is a steep learning curve and not without its limitations/difficulties...unlikely to see industrywide adoption
- The outcomes from this simple study suggest that providing more emphasis on our SLS requirements, in what is otherwise a normal design approach, could achieve similar positive design outcomes as DDBD

The Implications?

- Real building-stock improvements will only come if average (and below-average) engineers can easily adapt their existing understanding to any changes in design codes
- Design to elastic SLS response with an appropriate drift (and check with ULS demands) will inherently contain the ULS ductility development to a level that is realistic for that seismic hazard
- International comparisons strongly indicate our SLS return period needs revision...to 50 years?
- A basic study indicates that the outcomes of SLS driven design are very similar to ULS designs based on DDBD evaluation of design ductility
- Is Serviceability-driven design a simpler change than expecting low damage design systems or DDBD to sufficiently permeate through our building-stock, such that we see overall improvement in seismic resilience?

HolmesGroup.com