Building Codes - *Why they matter*

By:
Michael J. Griffin, P.E.

Developed under FEMA NETAP Program
Presentation Outline

- Building Code Purpose and History
- Code Adoption and Enforcement
- Earthquake Primer
 - Earthquake Hazards
 - Seismic Behavior Fundamentals
 - Common Seismic Vulnerabilities
- Benefits of Building Codes
- Resources
BUILDING CODE
PURPOSE & HISTORY
What are Building Codes?

- Regulations governing the design, construction, alteration, and maintenance of structures
- Minimum requirements to safeguard the health, safety, and welfare of building occupants
Purpose of Building Codes

“The purpose of this code is to establish the MINIMUM requirements to provide a REASONABLE level of safety, public health and general welfare through structural strength, means of egress facilities, stability, sanitation, adequate light and ventilation, energy conservation, and safety to life and property from fire and other hazards attributed to the built environment and to provide a REASONABLE level of safety to fire fighters and emergency responders during emergency operations.”
Why are Building Codes Important?

- Building Codes:
 - Save lives
 - Improve disaster resilience
 - Enhance building stock
 - Reduce insurance premiums
- Codes are for life safety protection and not loss prevention
- Everyone benefits when money is saved and losses are avoided
History of U.S. Building Codes

- Building Codes evolved over time largely in reaction to disasters and perceived threats (natural & man-made) lives and property.
- Earliest building regulations addressed problems associated with dense urban construction (improved substandard housing and control rapid spread of fire).
- Building regulations in the U.S. date to the 17th century:
 - Boston, Massachusetts (1872)
 - Fire - wooden chimneys and thatched roofs outlawed.
History of U.S. Building Codes

- Three model building code organizations formed between 1915 and 1940
- Each of these Building Codes was adopted largely in separate regions of the United States
 - Building Officials and Code Administration (BOCA): National Building Code
History of U.S. Building Codes

- BOCA, ICBO, and SBCCI formed the International Code Council (ICC) in 1994
 - Developed one set of uniform standards to be applied throughout the United States
 - Referred to as the I-Codes
 - IBC-2000 was the first Building Code from the International Code Council
 - Most current I-Codes are the 2015 Editions
Code Development Process

- ICC International Codes have a 3-year update cycle
 - Updates are a result of research and experience
 - Changes go through democratic consensus process
- Code updates are incremental (every 3 years)
 - Controls costs associated with new requirements
- Open process that allows code change proposal submittals from any individual
- Balloting of proposed code changes is done by ICC members
Code Development

- The International Code Council (ICC) develops codes in collaboration with:
 - Federal Emergency Management Agency
 - Other Federal, state, local, and private authorities
 - Professional organizations
CODE ADOPTION
& ENFORCEMENT
Code Adoption

- Rather than create and maintain their own codes, most States and local jurisdictions adopt the model building codes maintained by the International Code Council (ICC)

- ICC Publishes a variety of Codes:
 - Building: IBC, IRC, IEBC
 - MEFP: IMC, IFC, IPC
 - Green: IECC, IgCC
 - Other specialty codes: International Wildland-Urban Interface Code (WUI)
Code Adoption

- Adoption of the model codes is uneven across the country and within individual States
 - Inconsistent adoption present even in areas with high exposure to natural hazards (earthquakes, hurricanes, tornadoes, floods, winter storms, etc.)
- Unless a community has adopted the latest model building code, new structures may not provide the current minimum level of protection
 - Human and economic costs of natural disasters will rise when latest regulations are not in place
The IBC is in use or adopted in 50 states, the District of Columbia, the U.S. Virgin Islands, NYC, Guam and the Northern Marianas Islands.
New Madrid Seismic Zone
I-Code Adoption (2000 or later)

- Jurisdictions in the NMSZ with High or Very High Seismic Risk that have adopted codes with Seismic-Resistance Code Provisions

<table>
<thead>
<tr>
<th>State</th>
<th>High or Very High Seismic Risk</th>
<th>Seismic-Resistant Code Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IBC</td>
</tr>
<tr>
<td>Arkansas</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>Illinois</td>
<td>45</td>
<td>31</td>
</tr>
<tr>
<td>Indiana</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>Kentucky</td>
<td>41</td>
<td>12</td>
</tr>
<tr>
<td>Mississippi</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Missouri</td>
<td>97</td>
<td>82</td>
</tr>
<tr>
<td>Tennessee</td>
<td>75</td>
<td>37</td>
</tr>
</tbody>
</table>

BCEGS December 30, 2010 Data
Seismic Code Adoption

- Seismic provisions within the IBC, IRC, and IEBC represent the best available guidance on how structures should be designed and constructed to limit seismic risk
 - Adopt latest version of a model code in its entirety to be operating at the current standards
- In the past, some local governments viewed seismic sections of the model building codes as optional (adopted at local discretion)
- Seismic provisions are now fully integrated into the model building codes
Seismic Code Provision Incorporation

- NEHRP and ASCE 7 (consensus standards) are incorporated by reference into the IBC & IRC
Seismic Code
Expected Building Performance

- Seismic design standards reflect balancing of the risks versus the cost of designing to withstand that risk
 - Design for appropriate sized event
 - Design for appropriate performance goal
- Primary focus is on preventing collapse and protecting life safety
 - Buildings are not earthquake-proof
 - Damage will occur
Seismic Performance Levels

Operational

Immediate Occupancy

Life Safety

Collapse Prevention

Graphic by Ron Hamburger, EQE International

Loss

Building Code Design Level

0%

100%
Code Enforcement

- Adopting the latest Building Code is only part of the solution
- Codes must be effectively enforced to ensure that buildings and their occupants benefit from the advances in the Building Code
- Code enforcement is typically the responsibility of local government officials who review design plans, inspect construction, and issue the building and occupancy permits
Code Enforcement

- State Farm Insurance Co. contracted with SBCCI to evaluate code compliance in 12 randomly selected coastal communities in 1991

- Study findings:
 - Half of the communities were not enforcing their own code standards for wind resistance
 - Inspectors and reviewers had little or no training in wind-resistant construction
 - General lack of enforcement of adequate connections for windows, doors, and mechanical equipment
Code Enforcement

- Significant weakness in code enforcement exposed following Hurricane Andrew
- Reports by Dade County grand jury and the Federal Insurance Administration concluded a substantial portion of storm damage was attributable to lack of enforcement of the South Florida Building Code
- Estimated that at least 25% of the $26 billion in insured losses were from construction that failed to meet code
Elements of Code Enforcement

- Keep the Code provisions up to date
- Ensure that builders apply for building permits
- Qualified plan reviewers
 - Code organizations offer certification programs
- Ensure that construction proceeds according to the approved plans
- Qualified building inspectors
 - Certification available through code organizations
What about Older Buildings?

- Code requirements for existing buildings are typically those in effect when the structure was designed and constructed except in certain circumstances (significant renovation, change in use) that trigger current IBC or IEBC code provisions.

- Many older buildings are not well-protected against earthquake damage:
 - Seismic retrofit is voluntary in most jurisdictions.
 - Some local governments in high-hazard areas have enacted ordinances mandating owners evaluate and retrofit older vulnerable buildings (URMs, soft-story wood frame construction, non-ductile concrete frame).
SEISMIC HAZARDS
Seismic Hazard Map
PGA, 2% in 50 yr probability of exceedance
Earthquake Hazards

- Ground Shaking
- Surface Faulting
- Liquefaction
- Landslide
- Tsunami

- Man-made Consequences
 - Fire following earthquake
 - Hazardous chemical spills
 - Nuclear plant radioactivity
 - Flooding (levee break)
Ground Shaking

- Rock Ruptures
- Shock Waves Propagate through Rock
- Soil Shakes on Top of Rock
- Soil can Amplify the Ground Motion
- Buildings Shake Predominantly Horizontal

Epicenter at Surface

Vertical motion is about 1/3 the horizontal motion at locations away from epicenter
Surface Fault Rupture

DIP SLIP FAULTS

NORMAL

REVERSE

STRIKE SLIP FAULTS

LEFT LATERAL

RIGHT LATERAL

Kuangfu Junior High Track, 1999 Chi-Chi Earthquake
Photo by Robert Yeats, Courtesy of Oregon State University

Earthquake Trail, Point Reyes National Seashore
Photo by Betsy Malloy, 2008
Earthquake waves cause water pressure to increase in the sediment. Sand grains lose contact with each other leading to loss of strength and liquid-like behavior.

Photo by G.K. Gilbert, Courtesy of the US Geological Survey
Landslide

Government Hill Elementary, Anchorage, Alaska - 1964
Courtesy of Univ. of Alaska Anchorage, Special Collections
Tsunami

Great Sendai Earthquake, Japan - 2011
Photo by Associated Press via New York Times
Man-Made Hazards

Cosmo Oil Refinery, Photo by Reuters
SEISMIC BEHAVIOR FUNDAMENTALS
Building Response to Earthquakes

Vertical Motion

Horizontal Motion

FEMA

35
Earthquake Forces

Shaking is amplified over the height of the structure.

Transamerica Tower, San Francisco, California
Recorded during the 1989 Loma Prieta Earthquake
Earthquake Performance Indicators

Structural Irregularities

- Building vintage can affect building performance
 - Old buildings – strong and brittle
 - New buildings – ductile & ability to withstand high forces without collapse

- Building configuration can affect building damage

- Presence of irregularities is a general indicator of increased damage (particularly in older structures)
 - Vertical irregularity
 - Plan irregularity
 - Closely spaced structures (pounding)
Vertical Irregularity
Plan Irregularity

Photo by Thom Brajkovich, Paragon Architects

Photo by Schmidt Hammer Lassen Architects

Photo by Wiss, Janney, Elstner Associates, Inc.

Photo by Thom Brajkovich, Paragon Architects
Closely Spaced Buildings (Pounding)

(T & B) Photos by Dave Swanson, Reid Middleton Structural Group

Photo by CCS Group, Inc.
EXAMPLES OF SEISMIC VULNERABILITIES
Unreinforced Masonry Buildings

Photo by Dave Swanson, Reid Middleton Structural Group
Tilt-up Concrete

Cross-grain ledger failure at tilt-up panel wall connection
Stiffness and Strength Deficiencies

Photo by J.K. Nakata, USGS

Photo by Bay Area Retrofit
Nonstructural Deficiencies
URM Parapets

Photo by Laura Anthony, Bay City News
South Napa Earthquake, Aug. 2014 (M6.0)
Masonry Chimneys

Photo from Element Roofing, 2010 Canterbury Earthquake, M7.1

Photo from Virginia Department of Mines
2011 Virginia Earthquake, M5.8
Washington National Cathedral

- Damaged by M5.8 Virginia Earthquake in Aug. 2011
- Damaged spires – toppled and dislodged blocks
- Angels and other statues fell both inside out and outside

Falling debris hazards
Life Safety threat to persons evacuating the Cathedral

Photo by J. Scott Applewhite, Associated Press
BENEFITS OF BUILDING CODES
Codes are living documents that evolve over time to reflect advances in technology, scientific research, and lessons learned.
Great Chicago Fire (1871)

- Dense wood construction
- Fire destroyed 3.3 sq. miles
- 100,000 left homeless

Code Change:
- Fire-resistant materials required for the construction of future downtown buildings
- Pressure from Insurers led to more stringent regulations and more thorough safety inspections
Long Beach Earthquake (1933, M6.4)

- School buildings suffered disproportionate damage
 - 230 school buildings destroyed, suffered major damage, or unsafe to occupy
- Heavy damage to unreinforced masonry buildings
- Reinforced concrete buildings sustained less damage

Lowell Elementary, Dominguez Hills Archives, California State University

John Muir School, Photo by W.L. Huber, USGS

Stanford School, J.B. Macelwane archives, St. Louis Univ.
Long Beach Earthquake

- Encouraged code adoption:
 - Recognizing moderate earthquakes would recur, multiple local governments in Southern California adopted seismic regulations
- Field Act
 - Mandates public schools designed for seismic forces
 - Design professionals qualified by state registration
 - Independent plan review and inspection
 - Design professional, contractor, and inspector verify that building constructed according to the approved plans
Northridge Earthquake (1994, M6.7)

- Connection failures in structures thought to be ductile
 - Damage not anticipated by engineering community
- Fractures occurred in steel moment-frame buildings
 - Observed in 1960s to 1990s structures and at sites that experienced moderate ground shaking
 - Low and midrise structures
- Structures initially appeared undamaged
 - Little associated architectural damage
 - Damage concealed by fireproofing
- Concern that similar, undiscovered damage in other buildings affected by past earthquakes
Modern seismic codes are effective, improving life safety protection and reducing property losses.
South Napa, California Earthquake

- August 24, 2014, M6.0
- 2 killed, 300 injured
- Moderate to severe damage to > 2,000 buildings
- Few building collapses
- California Seismic Safety Commission PEER Study (*CSSC Publication 16-03, June 2016*)
 - City of Napa’s URM retrofit program was found to be successful in reducing damage and risk to life safety.
 - Modern buildings generally met or exceeded code performance standards.

Photo by Kelly Cobeen
Enhanced Community Resilience
Resiliency Revolution

- Strong link between Building Code adoption and enforcement and mitigating catastrophic losses
- Prospect of lessening catastrophe-related damage and ultimately lowering insurance costs is incentive for communities to enforce building codes
- Preventing and mitigating property losses enables communities to rebound quickly

Increased Resilience = Less Damage = Lower Insured Losses = Lower Rates
NEW ORLEANS VS NASHVILLE ECONOMIC GROWTH

REAL GROSS DOMESTIC PRODUCT (in Billions of Dollars)

YEAR

-105 BILLION

-80 BILLION

NASHVILLE

NEW ORLEANS

Graphic by Dr. Lucy Jones, USGS
Resiliency Examples

- 100 Resilient Cities initiative

 “Helping cities around the world become more resilient to the physical, social, and economic challenges that are a growing part of the 21st century.”

- Los Angeles – Resilience by Design
 - 1st Recommendation – Strengthen Our Buildings

- Resilient San Francisco – Stronger Today, Stronger Tomorrow
Resiliency Example – Los Angeles

Los Angeles – *Resilience by Design*

- Recommendation – Strengthen Our Buildings
 - Assess and Retrofit Pre-1980 Soft Story and Concrete Buildings
 - Implement a Seismic Safety Rating System
 - Create a Back to Business Program
 - Mandatory Retrofit of Buildings that are Excessively Damaged in Earthquakes
- Fortify our Water System
- Enhance Reliable Telecommunications
Recovery time can be reduced by building to the current codes and retrofitting older buildings to improve performance
Seismic Strengthening
Anheuser-Busch Van Nuys Brewery

- Seismic strengthening of Brewery buildings, tanks, & nonstructural components in the mid-1980s
- Retrofit cost < 1% of total replacement value
- Retrofit tested by the 1994 Northridge earthquake

Northridge EQ Outcome:
Mitigation was effective
Strengthening measures performed well
Damage to low-risk buildings that weren’t strengthened
Seismic Strengthening
Anheuser-Busch Van Nuys Brewery

- Fermentation Tanks
 - Bracing added to tank supports
 - Tanks were not damaged
Seismic Strengthening
Anheuser-Busch Van Nuys Brewery

- A-B estimated that total loss would have been in the range of $750 million to $1 billion
 - $350 million in direct property damage
 - $400 million in business interruption losses
 - Potential loss of market share due to lost production time (25% capacity for 6 to 18 months)
- Retrofit cost was $10 million
- Benefit-Cost Ratio: 75 (>>1)
State of Oregon
Seismic Strengthening Grant Program

- 2013-2015 State Budget included $30 million for seismic strengthening
 - 22 schools retrofitted (8,600 children protected)
 - 18 emergency response facilities retrofitted
- 2015-2017 State Budget includes $175 million for seismic improvements

McLoughlin High School Gym
$650,000 seismic grant

Richmond Elementary
$1.5 million seismic grant

Photo by Andy Giegerich, Portland Business Journal
Photo by Danielle Peterson, Statesmen Journal
SUMMARY
Summary

- Building codes are effective, inexpensive and a good investment for the future of our communities
 - Most important factor in reducing community risk is adoption & enforcement of up-to-date building codes
- Key factors to success:
 - Adopt modern model building codes
 - Establish strong and efficient system of code enforcement
 - Maintain the system with a well-trained, professional workforce
Summary

- Building codes are the foundation for community resilience
- Whether the risk comes from earthquakes, flood, hurricanes, or tornadoes, we have the knowledge, capacity and ability to build in a way that allows us to bounce back more swiftly after disasters
- And when we do, lives will be spared, communities will be preserved and resilience will be achieved
Summary

- Building code costs are small compared to benefits
 - Cost of materials and workmanship quality
 - Cost of administration and enforcement
- Studies have shown that Building Codes do not significantly increase overall building cost
 - Adoption of statewide codes can help reduce costs
- Studies have shown that adding adequate seismic provisions to a building code generally adds less than 2% to the overall cost of typical building construction
Summary – We can do a better job!
RESOURCES
FEMA Publications for Individuals and Homeowners

Earthquake Safety Guide for Homeowners
FEMA 530 / September 2005

Homeowner’s Guide to Retrofitting
Six Ways To Protect Your House From Flooding
FEMA L-235 / December 2009

Taking Shelter from the Storm
Building a Safe Room for Your Home or Small Business
Includes Construction Plans
Resources

Publications

- FEMA Building Codes Toolkit: https://www.fema.gov/building-codes-toolkit
 - Property Owners and the General Public
 - Engineering and Design Professionals
 - Building Code Officials
- California Governor’s Office of Emergency Services and FEMA, Guidelines to Strengthen and Retrofit your Home before the Next Earthquake, Revised October 2000.
- International Code Council: Government Relations Code Adoption Toolkit
Resources

FEMA Publications & Technical Guidance documents available in the FEMA Library (http://www.fema.gov/library)

Key Documents:

- FEMA Fact Sheet: Importance of Building Codes in Earthquake-Prone Communities Fact Sheet
Resources

FEMA Publications (continued)

- FEMA 909: Home and Business Earthquake Safety and Mitigation
- FEMA P-749: Earthquake-Resistant Design Concepts, December 2010
Resources

Videos

- ICC: Welcome to Building Codes 101 – Understanding Building Codes (Part I)
 https://www.youtube.com/watch?v=Kk358ZZa8pk

- ICC: Welcome to Building Codes 101 – Understanding Building Codes (Part II)
 https://iccslotficient2.adobeconnect.com/_a739800700/p61108341/?launch=false&fcsContent=true&pbMode=normal
Questions?