DRIFT ISSUES OF TALL BUILDINGS DURING THE
MARCH 11, 2011 M9.0 EARTHQUAKE, JAPAN -
IMPLICATIONS
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Outline

1. Why this subject?

» Discussion of INTERRUPTED functionality of
buildings at low ground level input motions caused by
event at far distances.

» Discussion of what may happen at larger input motions
with similar frequency content.

» Discussion of DRIFT RATIOS w.r.t. codes (Japan,
USA, Chile)

e 2. Two cases:
»Building A (770 km from epicenter)
»Building B (350-375 km from epicenter)
e 3.CONCLUSIONS




DRIFT RATIO (DR): CODES

 JAPAN: Max DR=1% for collapse protection
level motions (level 2 used for buildings 60 m or
taller [ The Building Center of Japan, 2001a and
2001Db]).

« UNITED STATES: MAX DR=2% for tall
buildings for Risk Category 1 or 2. (Table 12.12,
ASCE7-10, 2007).

« CHILE: MAX DR=0.2% [The Chilean Code for
Earthquake Resistant Design of Buildings
(NCh433.0196, 1996) [effective since 1960°s]




Tall Buildings

More and more taller RC buildings are designed/constructed
In the US as well as other parts of the world: Freedom
Tower In NYC, 92 story Trump Tower (Chicago), 828 m
tall Bhuj Tower in Dubai).Their performances are yet to be

assessed and/or observed'
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Selected Unique Buildings for
Abu Dhabi Municipality M

__4: Sky Tower

Courtesy: M. Ciudad-Real



Effect on tall buildings from events occurring from
sources at large distances?? [Dubai: Bhuj Tower 828
meters, Planned: Kuwait: >1000m)
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Tall Buildings in Chicago and Boston

According to Wikipedia:
In Chicago: 72 bldgs taller than 555ft (168 m) [37-108] Stories
In Boston :27 buildings taller than 400 feet (120 )=
« How will they perform during a strong event from distant
SouUrces??? [pictures from Wikipedia]
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ONE RINCON TOWER (SF):

RECENTLY COMPLETED COOPERATIVE
PROJECT BETWEEN CGS (CSMIP) and USGS

(TSD) Tuned Sloshing Dampers and BRB(Buckling Restrained Dampers -

also known as unbonded diagonal bracing)

“Tuned liquid damper” system

Unique water reservoirs at the top of the building not only aid in fire safety,
but are also computer controlled to counterbalance building movement and
" provide an added degree of stability.




New Buildings in Los Angeles

From ASCE STRUCTURE Magazine, June 2012 (by R. Gerges, K. Benuska and C. Kumabe)
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Tall Buildings (from Tall'BlagsiC |

2011[88 buildings > 200 m in height]
2012[96 buildings>200m expected completio

(from left to right: “Marilyn Monroe”[Absolu
Elliptical Bligh Street, Australia, Doha Towe
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CHILE TAL

e ~ 3,000 tall building
Chile. ~ 80 damage
(Concepcion where
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Two bldgs: Concepcion
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Santiago
Y& [core shear-wall]
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Parque Araucano
building, Santiago.
Building remained

fully operational
(from J.Maffel).
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Drift vs. Performance

 The most relevant parameter to assess performance is the
measurement or computation of actual or average story drift
ratios. Specifically, the drift ratios can be related to the
performance- based force-deformation curve hypothetically
represented in Figure 1 [modified from Figure C2-3 of
FEMA-274 (ATC 1997)]. When drift ratios, as computed
from relative displacements between consecutive floors,
are determined from measured responses of the building,

the performance and as such “damage state” of the building
can be estimated as in the figure (below).
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APPROACH 2: Displacement via Real-time Double Integration

N channels of
accelerameters
deployed
strategically in
building

!

Real-time streaming of

n channels of accelerations
Identify m channels for drift
computations.

Double
integrate

to obtain
displacements

=
-

(a) Comput'e relative
displacements (di-dj)
(b) Compute drift ratios

Rij=(di-dj)f(hi-hj]
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Building A: ~7

Building B:~350-

20




Building A, in Osaka Bay ~767 Km
from epicenter of March 11, 2011 main-
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36°46'20.74" N 135°27'26.85" E elev -3843 1t

e 256 m tall (55 stories+3 story basement) IR == ===
» Construction finished in 1995 (pre-1995 code,
pre-(KIK-NET/K-NET). Vertically irregular,
steel, moment-frame (rigid truss-beams/10
floor). No shear walls around elevator shafts i
«  60-70 m long piles below foundation e




Building in Osaka Bay ~769 Km from epicenter of March 11,
2011 main-shock (numerous records but 8 events considered)
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Closest Free-Field Station:
OSKHO02 (KIK_NET)
Record indicates

[(a) site frequency from
actual data (~.14-.18 Hz)
& (b) shaking duration]
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Site Info from OSKHO02 and building site
Indicate similarities and hence result In

similar site frequency as that of strong
shaking data [f(site)~0.13-0.17 Hz]
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System Identification

ORIENTATION X[229] ¥[34 TORSION
MODES 1 2 3 1 2 5 | 2
SYSTEM IDENTIFICATION
MAINSHOCK [EVENT 1] (System Identification)
Freq(Hz) 0.1524 | 0.4887 | N/A | 0.1447 | 0.4264 | 0.7250
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Design Analyses, Spectral Analyses & System

|dentification

ORIENTATION X[229] Y1319] TORSION
MODES 1 2 3 1 2 3 1 2
ANALYSES DURING DESIGN
Freq(Hz) 1887 1724 2703
[T(s)] [5.3] [5.8] [3.7]
MAINSHOCK [EVENT 1] (Spectral Analyses)
Freq(HZ) 0.152 | 0489 | 0.905 | 0.145 | 0.426 | 0.725 218 | 58
[T(s)] [6.58] | [2.06] | [1.11] | [6.90] | [2.34] | [1.38] | [4.69] | [1.72]
SYSTEM IDENTIFICATION
MAINSHOCK [EVENT 1] (System Identification)
Freq(Hz) 0.1524 | 0.4887 | N/A | 0.1447 | 0.4264 | 0.7250
[T(s)] [6.56] | [2.05] j6:91] | [Pi35] | [138]
Damping ( &) 0.012 | 0.020 0.016 | 0.001 | 0.020




AVERAGE DRIFT RATIO

e Why average drift ratio?
e Sparse instruments
e ~.005 (or ~.5%) drift ratio
2\ (X-Dir)

&4 + Implications(!!): 3%g
Input motion, ~.5% drift
ratio: not-acceptable
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Building B: 55-Story Shinjuku Center Building In
Shinjuku, Tokyo (—350-375 km from Epicenter)
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According to EERI Special Earthquake Report (EERI Newsletter, 2012), the 54-
story Shinjuku Center Building was constructed in 1979. The report states:
“The structure’s height is 223m, and the first natural period of the structure is
5.2 and 6.2 seconds in two perpendicular directions. The dampers were
calculated to have reduced the maximum accelerations by 30% and roof
displacement by 22%



High-rise buildings:
(Example: 55-Story Shinjuku Center
Building in Shinjuku, Tokyo0) (courtesy: J. Moehle)
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Built 1975, retrofitted 2009 viscous dampers): First story
acceleration (BLUE~max —0.35g) This is not large. Roof
displacement time history (RED —1.5m) Most notable is the long
time motion over 10 minutes. Courtesy: J. Moehle).




e AVERAGE DRIFT RATIO: 150/22300 =
~0.7% < 1% according to Japanese

practice.

« However: the actual drift ratios computed from relative
displacements divided by story heights between some
of the pairs of two consecutive floors are certainly to be
larger than the average drift ratio computed using the
maximum roof displacement divided by the height of

the building




CONCLUSIONS (1/2)

e 1. For small ground level input ground motions as in the
two cases presented herein, these two tall buildings
deformed significantly to experience sizeable drift ratios.

« 2. Collection of such data Is essential (a) to assess the
effect of long period ground motions on long period
structures caused by sources at large distances, and (b) to
consider these effects and discuss whether the design
processes should consider reducing drift limits to more
realistic percentages (c) finally, further applications of
unique response modification features are feasible to
reduce the drift ratios.



CONCLUSIONS (2/2)

3. Behavior and performances of these particular tall
buildings far away from the strong shaking source of the
M9.0 Tohoku earthquake of 2011 and large magnitude
aftershocks should serve as a reminder that, in the United
States as well as in many other countries, risk to such
bullt environments from distant sources must always be
considered.

e 4. The risk from closer large-magnitude earthquakes that
could subject the buildings to larger peak input motions
(with similar frequency content) should be assessed In
light of the substantial drift ratios under the low peak
Input motions experienced during and following the
Tohoku earthquake of 2011.
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