INTRODUCTION

- Why do we update the National Seismic Hazard Maps?
- What have we learned recently that influences the maps?
- What is the uncertainty in the maps?
- What products will help us communicate risk?

Early versions of U.S. hazard maps

U.S. Coast and Geodetic Survey, 1948

Richter, 1958

Seismic risk map, developed in 1958 by Charles Richter, shows maximum expected seismic intensities (redrawn).

Algermissen, 1969

Seismic risk map of the United States, redrawn from map issued in 1969 by S. T. Algermissen of the U.S. Coast and Geodetic Survey (now with U.S. Geological Survey).

Algermissen and Perkins, 1976

Methodology

Comparison of ground motion models

Earthquake Sources

Later versions of the U.S. hazard maps

0

Petersen et al., 2008

Petersen et al., 2014

Los Angeles

What changed in 2014?

- Ground motion models (NGA-West2, CEUS ground motion models)
- UCERF3 (longer complex sources, regional seismicity rate constraints, new faults, smoothing M 2.5)
- Cascadia subduction zone (new characterization of M 8-8.8 earthquakes)
- Intermountain West/Pacific NW faults (Wasatch Fault, Eglington Fault, geodetic data)
- CEUS SSC Source Characterization (catalog, smoothing)
- Induced Seismicity

Ground Motion Characterization

2014 CEUS Ground motion models

Ground Motion Characterization: NGA-East

- About 22 Seed models
- NGA-East parameters
 - Average horizontal ground motions (5%-damped PSA for *f*=0.1-100Hz), for
 - Hard rock sites (V_S=3000 m/s, κ=0.006 s) located up to 1,500 km from
 - Future earthquakes in CENA M4.0-8.2
- Deliver 29 table-based models derived from Sammons Map
- Adjustment parameters for the Gulf Coast region.

Ground motion models

2014 Median

 higher for
 Strike-slip (near)
 and lower for
 reverse and
 normal faulting
 near) all fall off
 faster with
 distance

Standard
deviation higher

Ground motion models (subduction)

CALIFORNIA: UCERF3 2014 CA NSHM Logic-tree

Ground motion models: NGAW2

- Abrahamson et al. (0.22)
- Boore et al. (0.22)
- Campbell & Bozorgnia (0.22)
- Chiou & Youngs (0.22)
- Idriss (0.12)

21,600 branches

Uniform California Earthquake Rupture Forecast Model (UCERF3)

CALIFORNIA

UCERF3 San Jacinto Rupture Participation Ned Field Peter Pow

Alternative rupture models/rates

2008 to 2014 Hazard Change; PGA 2% in 50-yr

2008

2014

2014 / 2008

Hazard Change: Decomposed 2014 minus 2008 Faults Model only 2014 minus 2008 Grid Sources only

2% in 50 yr. 5-Hz SA Difference (g)

Hazard Change: Grid Sources

Cascadia Subduction Zone Logic Tree

Cascadia Subduction Zone

Cascadia Subduction Zone

CASCADIA

Pacific NW changes due to faults, seismicity, ground motions

Inclusion of geodetic data

WUS changes due to faults, seismicity, ground motions

Central and Eastern U.S.

New Madrid

-60°

Faults

Hazard difference of Alternative gridded models

Maximum Magnitude

Induced Seismicity

From Jonathan Godt (USGS)

Locations of Potential Induced Earthquakes

M>2.5 Earthquakes within 17 areas of suspected Induced seismicity

Base Case, 5-Hertz

0.04% chance of exceedance per year (2% in 50-years)

1.39% chance of exceedance per year (50% in 50-years)

Comparison of 2014 model with 2008 model (2014-2008 or 2014/2008 5Hz- 2% in 50)

5-Hz maps showing differences from 2008 (A- seismicity; B- faults; C-GMMs)

Los Angeles Uncertainty Analysis

Challenges

- How can we develop better hazard estimates in the future?
- What products can USGS develop to help people understand the seismic hazard information?
- How can we better assess and communicate uncertainty?
- How can we test the hazard products?

Hazard curves for cities across U.S.

Number of schools in MMI zones			
ммі	50% in 50 years	10% in 50 years	2% in 50 years
v	24		
VI	4000		
VII	619	502	
VIII		4006	4479
IX		135	164

Comparison of 1996 hazard and seismicity

1996 USGS PGA 2% in 50; **★** M4.0 and greater since 1997

Conclusions

- Seismic hazard varies within each cycle based on new data, models, and methods.
- Uncertainties are large for source and ground motion models.
- Earthquake Spectra special issue is planned for release in the next few months.
- USGS will continue to develop hazard products that will be useful for end-user communities.

Hazard Change: Decomposed

Sources

Total

