A TRANSFORMATIVE INVESTMENT
IN CALIFORNIA’S FUTURE

Kevin Thompson, PE, Director of Engineering
Kenneth W. Campbell, Chair, Seismic Specialists Team

ATC/USGS Seismic Hazard User-Needs Workshop
September 22, 2015
Menlo Park, California
HIGH-SPEED RAIL: More Than A Transportation Program

• California is 7th Largest Economy in the World
• Comparable to Northeast Corridor in Terms of Distance, Population and Complexity
• Transformative Investment
• Connecting all California Population Centers
HIGH-SPEED RAIL OFFERS MORE CHOICES IN CALIFORNIA

• The State’s Population is Growing
 » 50 million by 2050

• Congestion Diminishes Our Competitiveness
 » Highway: Six of top 30 congested urban areas in US are in California
 » Airways: LAX to SFO is the busiest short-haul market in United States
 » Railways: Freight and passenger service share tracks

• Poor Air Quality Impacts Our Communities
 » South Coast and Central Valley Air Basins Don’t Meet Current Clean Air Objectives

• An Efficient and Less Expensive Alternative
 » Alternatives are 2-3 times more expensive
CONNECTING CALIFORNIA: PROJECT SCOPE

- **Phase I:**
 - 520 Miles
 - San Francisco to Los Angeles/Anaheim

- **Phase II:**
 - Extends 300 Miles
 - Connections to Sacramento & San Diego

- **Proposition 1A**
 - At least 200 mph
 - San Francisco-Los Angeles Union Station: two hours, 40 minutes
 - 24 total stations
PROGRAM DELIVERY STATUS

- Environmental Clearances
 - 10 sections, 2 completed
 - Complete Phase I by end of 2017
- Construction Underway (Design-Build)
 - Civil infrastructure in the Central Valley (Construction Package 1, 2-3 and 4)
- Requests for Expressions of Interest
 - Initial Operating Section (North and/or South)
 - Design-Build-Finance-Maintain
ENGINEERING CHALLENGES: MAJOR INVESTIGATION SEGMENTS

• Three segments for investigation.
 » Gilroy to Los Banos (Pacheco Pass)
 » Bakersfield to Palmdale
 » Palmdale to Burbank
SEISMIC SPECIALISTS TEAM

- Responsible for ground motion development for CP 1 and CP 2-3
SEISMIC SPECIALISTS TEAM

Fault Surface-Rupture Displacement

Kevin Coppersmith

Hazardous Fault Screening

Kevin Coppersmith

Fault Displacement Hazard Analysis

Bob Youngs, Kathryn Hanson (FW)
PRELIMINARY GROUND MOTIONS

• Process for developing Preliminary Ground Motions
 » Purpose: Develop ground motions at ground surface to be used during procurement process by CP bidders to develop bid proposal
 » Process:
 • Develop ground motions for MCE and OBE according to established procedures
 • Develop horizontal design spectra for V_{S30} zones from PSHA using available site data and alignment data
 • Define controlling events using hazard deaggregation
 • Develop vertical design spectra from horizontal spectra
 • Produce time-histories matched to design spectra
 • Special sites such as those with structures over water crossings require site-specific exploration and are not included
Process for developing Final Ground Motions – Non-Special Sites

» Purpose: Develop ground motions at ground surface to be used during final design of elements such as aerial structures, bridges, tunnels, etc. for non-Special Sites (i.e., locations without highly nonlinear soils)

» Process:
 • Develop ground motions for MCE and OBE according to established procedures
 • Revise horizontal design spectra for V_{S30} zones from PSHA using site data and alignment data acquired by CP Contractor
 • Define controlling events using hazard deaggregation
 • Develop vertical design spectra from horizontal spectra
 • Produce time-histories matched to design spectra
Special Sites

Locations where GMPEs cannot be confidently applied to develop vibratory ground motions at the ground surface

Such sites may include:

- Locations subject to liquefaction
- Locations subject to highly nonlinear soil response
- River crossings
- NEHRP Site Classes E and F
- Locations with complex structures (long span bridges, tunnels, underground structures, trench boxes, etc.)
• Process for developing Final Ground Motions – Special Sites

» Purpose: Develop ground motions at depth to be used during final design of elements located at Special Sites

» Process:

• Develop ground motions for MCE and OBE according to established procedures
• Develop spectra and spectrally matched ground motions for V_{S30} of 520 m/s, 760 m/s and 1220 m/s from PSHA and deaggregation in advance of Special Site exploration
• CP Contractor to obtain V_s measurements in 500 ft boring
• Develop horizontal design spectra at specified depth in profile
• Produce time-histories matched to design spectra
• CP contractor to perform site-response analysis to produce horizontal design ground motions and spectra at ground surface
• Develop vertical design spectra from horizontal spectra
Process for Fault Screening/Hazard Analysis

» Purpose: Determine whether faults that cross or are in close proximity to the alignment are hazardous and if so conduct a hazard analysis

» Process for Fault Screening:
 • Holocene displacement (i.e., movement within last 10,000 yr)
 • Slip-rate greater than 1 mm/year
 • Recurrence interval less than 1,000 yr

» Process for Hazard Analysis:
 • Conduct probabilistic displacement hazard analysis (PDHA) for MCE and OBE at fault crossings for hazardous faults passing fault screening
 • Determine displacement, fault orientation relative to alignment, width of fault zone and locations of displacement
Required hazard data

» Vibratory Ground Motion:
 - Validated probabilistic seismic hazard analysis (PSHA) code
 - Seismic source model (faults and distributed seismicity)
 - Ground motion prediction equations in terms of V_{S30}
 - Full logic tree to capture uncertainty
 - Deaggregated hazard to define controlling events
 - Used OpenSHA, UCERF2 source model and NGA-West1 GMPEs
 - Will update with UCERF3 and NGA-West2 GMPEs going forward

» Fault Surface-Rupture Displacement:
 - Validated Probabilistic Displacement Hazard Analysis (PDHA) code
 - Seismic source model (faults)
 - Fault displacement scaling relationships in terms of magnitude, type of fault, etc.
 - Full logic tree to capture uncertainty
 - Will use UCERF3 and currently available fault displacement scaling relations
SEISMIC DESIGN CRITERIA

• Discussion
THANK YOU

Kevin Thompson, Director of Engineering
(916) 330-5638 kevin.thompson@hsr.ca.gov

Headquarters
California High-Speed Rail Authority
770 L Street, Suite 800
Sacramento, CA 95814
www.hsr.ca.gov

instagram.com/cahsra
facebook.com/CaliforniaHighSpeedRail
twitter.com/cahsra
youtube.com/user/CAHighSpeedRail