Resilience-Based Seismic Design: Current Design Approach, Technical Developments, and a Look Into the Future

Curt B. Haselton, PhD, PE
Professor and Chair @ Cal. State Chico
Co-Founder @ HB-Risk Group [www.hbrisk.com]

Jack W. Baker, PhD
Associate Professor @ Stanford University
Co-Founder @ HB-Risk Group

[and discussion of project work by many others]

15th ATC US-Japan Workshop on Structural Engineering and Resiliency
How Do We Design U.S. Buildings Today?

- Building Life Safety:
 - This is the focus (intent of the building code).
 - **Result:** Probably do fairly well here (?).

- Building Closure and Business Disruption:
 - Not considered is design process.
 - **Result:** Not controlled. Likely “months” at design-level, possible demolition (“years”) at maximum-level.

- Building Damage and Repair Costs:
 - Not considered is design process.
 - **Result:** Not controlled. Presume 20% loss at design-level, possible demolition at maximum-level.
How Do We Design U.S. Buildings Today?

- **Building Life Safety:**
 - This is the focus (intent of the building code).
 - **Result:** Probably do fairly well here.

- **Building Closure and Business Disruption:**
 - Not considered is design process.
 - **Result:** Not controlled. Likely “months” at design-level, possible demolition (“years”) at maximum-level.

- **Building Damage and Repair Costs:**
 - Not considered is design process.
 - **Result:** Not controlled. Presume 20% loss at design-level, possible demolition at maximum-level.

Question #1: Why do we design this way?

Question #2: Is this how we should design buildings?
What If?

What if we…

• …had a robust analysis method that could estimate monetary losses, closure time, and fatalities/injuries?
• …had an analysis method detailed enough so we can clearly see the effects of our design decisions?
• …had this analysis streamlined so we can do the initial analysis in hours (rather than days/weeks) and then refine the analysis as needed?
• …had a building rating system (USRC) that packages this all into an easily communicated result? [Heintz]

How would this change our thinking?
Overview of FEMA P-58

- P-58 is a performance prediction methodology based on a 10-year FEMA study (enabled by much previous research).
- P-58 is an alternative to other experience-based or judgment-based methods (e.g. HAZUS, ATC-13, etc.).
- P-58 is tailored to building-specific analysis (cause + effect).
- ATC is currently working on another 5-year effort to further advance the methodology, implementation, ease of use.

FEMA P-58 Output Results:
- Losses [$]
- Fatalities & injuries [safety]
- Repair time & red tagging [business disruption]
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)

- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)

- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method

- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)

- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method

- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)

- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method

FEMA P-58: Methodology
15th ATC US-Japan Workshop on Structural Engineering and Resiliency
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)

- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method

- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves

- Loss Estimation (loss curves) and other consequences
FEMA P-58: Methodology

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
- Loss Estimation (loss curves) and other consequences

Monte Carlo Simulation used (“roll dice” thousands of times).
Each “dice roll” gives a single observation of losses and other consequences.
Full set of “dice rolls” provides solid statistical information on performance (e.g. 10,000 at 14 levels = 140,000 runs).
FEMA P-58: Output Examples

- Sample results (12-story RC frame):

![Graph showing SEL normalized to replacement cost for various components as a function of Sa for T=2.01s (g)].
FEMA P-58: Output Examples

- Sample results (12-story RC frame):
FEMA P-58: Output Examples

- Dig as deep as you like…
FEMA P-58: Benefits

- Objective process based on data and research.
- Quantitative performance information:
 - Solid statistical basis.
 - Sensitive enough to inform design decisions (cause + effect).
 - Tools to communicate with owners.
 - Dig as deep as you like.
FEMA P-58: Perceived “Difficulty”

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)

- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method

- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves

- Loss Estimation (loss curves) and other consequences

I need to hire a geotech to do this…?

I need to do a response-history analysis…?

I need to count and enter every foot of partition wall and other contents…?
Software Needs and Contribution

- A barrier to widespread FEMA P-58 adoption has been related to software and ease-of-use (high cost of entry).
- ATC/FEMA have created a great methodology but are not in the business of maintaining software (for the long-term).
- **Need:** For our profession to move forward with FEMA P-58 methods, an enabling software is needed.

- **Our Contribution:** In February, we decided to fill this role by creating/maintaining a user-friendly software for P-58.
- **Our Goal:** Help enable adoption of FEMA P-58 in practice.
- **ATC Coordination:** We have been in coordination with ATC from the start (so all pulling in same direction).
A barrier to widespread FEMA P-58 adoption has been related to software and ease-of-use (high cost of entry).

ATC/FEMA have created a great methodology but are not in the business of maintaining software (for the long-term).

Need: For our profession to move forward with FEMA P-58 methods, an enabling software is needed.

Our Contribution: In February, we decided to fill this role by creating/maintaining a user-friendly software for P-58.

Our Goal: Help enable adoption of FEMA P-58 in practice.

ATC Coordination: We have been in coordination with ATC from the start (so all pulling in same direction).
Software Needs and Contribution

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
- Loss Estimation (loss curves)
Software Needs and Contribution

- Hazard and Ground Motions
 - Soil and hazard curve
 - Ground motions (if needed)
- Structural Responses
 - Option #1: Response-history
 - Option #2: Simplified method
- Damage Prediction
 - Contents (str. and non-str.)
 - Fragility curves
- Loss Estimation

Soil and hazard curves embedded.

Simplified method embedded (only need period, mode shape, yield drift).

Structural and non-structural contents estimates and pre-populated.

Two-level structure:
(1) Simple (prelim. design, basic rating, PML)
(2) Refine and go as deep as you like (full new PBD).
What If?

What if we…

• …had a robust methodology that can estimate monetary losses, closure time, and fatalities/injuries?
• …had a methodology detailed enough so we can clearly see the effects of our design decisions?
• …had this analysis stream-lined so we can do the initial analysis in hours (rather than days/weeks) and then refine the analysis as needed?
• …had a building rating system (USRC) that packages this all into an easily communicated result? [Heintz]

How does this change our thinking?
Discussion: Back to my Initial Question...

Question: Given all these recent technical developments, is this still how we should design buildings?

- **Current Design:**
 - **Safety:** Probably decent.
 - **Building Closure:** Not controlled. Likely “months” at design-level, possible demolition (“years”) at maximum-level.
 - **Repair Costs:** Not controlled. Presume 20% loss at design-level, possible demolition at maximum-level.

- Exciting time of development (FEMA P-58, software, USRC, etc.). How do we leverage this to achieve a more resilient infrastructure?

- What are our policy recommendations for:
 - The design of all buildings?
 - The municipality (or State of CA) worried about widespread building damage and businesses closure affecting the city/region?
 - Owner-elected improved design to protect business or assets?
 - Other?
Closing

- Thank you for your attention and feedback!
- E-mail:
 - chaselton@csuchico.edu
 - curt@hbrisk.com
- Cell: (530) 514-8980