Seismic Design of Japanese Nuclear Power Plants and Their Actual Response in the July 2007 Chuetsu-oki Earthquake

Akira Wada
Professor Emeritus, Tokyo Institute of Technology

Katsuichiro Hijikata
Professor, Shibaura Institute of Technology
Introduction

• Japan had 54 Nuclear Power Plant units before March 11, 2011. Now we have 50 units. U.S.A. has almost 100 NPP units and China has around 40.

• Japan, U.S.A and China are also earthquake prone countries. Seismologists and engineers have learned how to build safe NPPs against major earthquakes.
Introduction

• The earthquake engineering technologies used for the design of NPPs are some of the most advanced technologies in the field of earthquake engineering.

• These technologies are usually transferred to the seismic design of ordinary buildings.

• Earthquake design and construction technologies of NPPs are very important in Japan, U.S.A, China and many other earthquake prone countries.
Earthquake Design and 2007 Earthquake

• The earthquake ground motions used for the design of NPPs are much stronger than those used for the design of ordinary buildings.

• As a result, a strong earthquake affecting an NPP will very rarely exceed the design criteria.

• But, in July of 2007 the Chuetsu-oki earthquake affected the Kashiwazaki-Kariba Nuclear Power Plant and the recorded earthquake ground motion exceeded the design ground motion.
5 units of BWR (1100 MWe) and 2 units of Advanced BWR (1356 MWe)
⇒ Total capacity is 8,212 MWe
• 2007.7.16
• Magnitude 6.8
• Depth 17km
• Distance 16km

Epicenter

Nuclear Power Plants

2014/12/8 15th US Japan Workshop Akira Wada
NPPs attacked by 2007 earthquake

• The earthquake did not significant damage at the plant;
• however much minor damage was observed.
• Engineers from the Tokyo Electric Power Company, several professors, and I formed a research committee to study the earthquake response of this plant to the Chuetsu-oki Earthquake.
Maximum acceleration (cm/sec²) at the basements

<table>
<thead>
<tr>
<th>Unit</th>
<th>Observed Values</th>
<th>Design Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS</td>
<td>EW</td>
</tr>
<tr>
<td>1</td>
<td>B5F</td>
<td>311</td>
</tr>
<tr>
<td>2</td>
<td>B5F</td>
<td>304</td>
</tr>
<tr>
<td>3</td>
<td>B5F</td>
<td>308</td>
</tr>
<tr>
<td>4</td>
<td>B5F</td>
<td>310</td>
</tr>
<tr>
<td>5</td>
<td>B4F</td>
<td>277</td>
</tr>
<tr>
<td>6</td>
<td>B3F</td>
<td>271</td>
</tr>
<tr>
<td>7</td>
<td>B3F</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>263</td>
</tr>
</tbody>
</table>
Damage due to the earthquake 2007

No Damage in the plants

Many Damages in other buildings

2014/12/8 15th US Japan Workshop Akira Wada
Responses in the Unit-1

- Static Forces
- Dynamic Analysis
- Design
- Observed

[Diagram showing design and observed shear forces with height levels indicated]

2014/12/8 1015th US Japan Workshop Akira Wada
Fire accident at the transformer of Unit-3
Large deformation of Exhaust duct at Unit 1 to Unit 5
Buckling of tanks
Broken to outdoor fire extinguishing piping

Screw joint

Coupling joint
Cracks in the tailrace tunnel
Liquefaction happened in the site
Old Regulatory Guide for Reviewing Seismic Design of Nuclear Power Reactor Facilities

- Basic idea was developed more than 40 years ago.
- Original version of the regulatory guide was published at 1981.
- Current version was revised at September 19, 2006.
Contents: September 19, 2006

1. Introduction
2. Scope of Application
3. Basic Policy
4. Classification of Importance in Seismic Design
5. Determination of Design Basis Earthquake Ground Motion
6. Principle of Seismic Design
7. Load Combinations and Allowable Limits
8. Consideration of the Accompanying Events of Earthquake
session 4 and session 6 in OLD Guide
Classification of Importance in Seismic Design and Structural Design

S Class Most important --- 3 times stronger
B Class Important --- 1.5 times stronger
C Class ordinary --- same as ordinary
Session 8. of OLD Guide
Consideration of the accompanying events of earthquake

(2) Safety functions of Facilities shall not be significantly affected by the tsunami which could be postulated appropriately to attack but very scarcely in the operational period of Facilities.
Pendulum of worries and concerns

Shaking and Vibration

Tsunami and Water

Not only researchers but also People, companies and Governments.
Severe tsunami attacks to a hospital that was retrofitted by steel braces
Effects of tsunami on NPPs

• Almost all researchers and engineers in earthquake engineering, including me, have traditionally focused their attention to the vibration aspects of earthquakes;

• Very few have focused on the effects of tsunami on NPPs.
What we have to reconsider

• Before March 11, 2011, we had not any experience that the tsunami hit nuclear power plant at all.

• Japanese seismic design guide wrote only one word of ‘tsunami’ at the final short sentence.

• Humankind is always optimist.

• We cannot take into consideration before an accident that we have not experienced.
New Regulatory Requirements For Light Water Nuclear Power Plants (Earthquakes and Tsunamis)

1. Basic Design Policy for Earthquakes and Tsunamis
2. Classification of Importance of Facilities
3. Formulation of Standard Seismic Motion
4. Seismic Design Policy
5. Considerations Regarding Ground Stability
6. Formulation of Design basis tsunami
7. Design Policy against Tsunami
8. Design Considerations Regarding the Stability of Surrounding Slope
Different Thoughts

• When all engineers think or believe one common thought such as "earthquake is vibration", it will be very dangerous against next earthquake.

• Nature always thinks all.

• Other disaster such as Tsunami will be happened in the next earthquake.

• We have to think many things and different thoughts are always important.
Two approaches for earthquake engineering

• Precise and complicated theories

• Comprehensive and simple methods
Why natural disaster cannot be stopped

What human-kinds did. < Nature
Why natural disaster cannot be stopped

What Scientists & Engineers discussed.