Displacement-based Seismic Design of Masonry Shear Wall Structures

Farhad Ahmadi, Ph.D., P.E., S.E.
Research and Development
Walter P Moore and Associates

Big Island of Hawaii, HI December 4, 2014
important points of this presentation

• current seismic design does not always work well for shear-wall structures

• proposed displacement-based seismic design works well for shear wall structures
 ▫ produces structures that behave reliably in strong earthquakes
 ▫ more consistent and more transparent than current seismic design
Prof. Richard Klingner
Jaime Hernandez Barredo

Prof. Benson Shing
Andreas Stavridis
Marios Mavros

Prof. David McLean
Jacob Sherman
Christina Duncan
Will Cyrier
contents of presentation

• review and examine current seismic design of masonry shear wall structures
• develop proposed displacement-based design
• check and validate displacement-based seismic design
current force-based design approach ...

• determine seismic design category (SDC) based on geographic location and soil
 ▫ select from ASCE 7 list of permitted structural systems
 ▫ special, intermediate reinforced masonry shear walls
 ▫ prescribed detailing for each wall segment

![SDC](image)

![Prescriptive reinforcement](image)

ASCE 7 list of permitted systems
... current force-based design approach

- based on structural system, assign seismic design factors \((R, C_d, \Omega_0)\)
 - design for elastic forces divided by \(R\)
 - design for elastic displacements multiplied by \(C_d\)
 - design elements that must remain elastic for elastic forces divided by \(R\) and multiplied by \(\Omega_0\)

<table>
<thead>
<tr>
<th>Seismic-Load Resisting Systems</th>
<th>(R)</th>
<th>(C_d)</th>
<th>(\Omega_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special RM Load Bearing Shear Walls</td>
<td>5</td>
<td>3 1/2</td>
<td>2 1/2</td>
</tr>
<tr>
<td>Intermediate RM Load Bearing Shear Walls</td>
<td>3 1/2</td>
<td>2 1/4</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
force-based design does not always work well

- final behavior is not always consistent with design intent

 - easy to design
 - may be impossible to design rationally

 - weakly coupled walls
 - irregular openings

- ductility required by R and implied by detailing may not be available

 - a low-rise structure in SDC D will not achieve high ductility
force-based design requirements are not reliable

- emphasis on forces instead of deformations is misguided

- force-based principle is not valid for short-period structures
better design approaches?

• modified force-based
 ▫ R-factor accounts for actual system behavior

• displacement-based
 ▫ emphasizes deformations
 ▫ designer determines deformation limits
5 major tasks in this research . . .

- task 1- examined the behavior masonry buildings designed using force-based procedures

- task 2- developed displacement-based seismic design method
5 major tasks in this research

- **task 3-** conducted cyclic-load tests on masonry wall segments at UT Austin and WSU

- **task 4-** improved analytical tools

- **task 5-** validated displacement-based seismic design for masonry
task 1 - examine force-based procedures

- used shake-table tests to examine overall and local behaviors of masonry buildings
- evaluate the performance of special reinforced masonry walls
- assess the failure mechanism of a real wall system

plan view of prototype building

3-story specimen, UCSD-NEES
3-story specimen behaved well

- specimen was subjected to an extended series of ground motions

<table>
<thead>
<tr>
<th>Ground Motion</th>
<th>Scale Factor</th>
<th>Level of Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Valley 1979</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>El Centro</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120%</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>150%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180%</td>
<td>MCE</td>
</tr>
<tr>
<td></td>
<td>250%</td>
<td>above MCE</td>
</tr>
<tr>
<td>Imperial Valley 1940</td>
<td>300%</td>
<td></td>
</tr>
<tr>
<td>El Centro #5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northridge 1994</td>
<td>125%</td>
<td>MCE</td>
</tr>
<tr>
<td>Sylmar</td>
<td>160%</td>
<td>1.25 MCE</td>
</tr>
<tr>
<td>Chi Chi 1999</td>
<td>150%</td>
<td>2.0 MCE</td>
</tr>
</tbody>
</table>

150 % Chi Chi 1990 (2 MCE)

Design Earthquake (DE), 10% in 50 years
Maximum Considered Earthquake (MCE), 2% in 50 years
task 2- develop displacement-based design

- based on achieving specified deformation limits under selected seismic hazard levels
- fundamental difference between force-based and displacement-based design

![MDOF structure](image1)

![idealized SDOF](image2)

![Graph](image3)
technical basis for displacement-based method

- select a reasonable target mechanism for each hazard level

- identify the inelastic deformation demands and adjust strength or detailing

- reinforce for sufficient inelastic deformation capacity in hinging regions
fundamental steps

Step 1: Define Seismic Hazard

Step 2: Define Design Target Local Deformation Ratios and Target Drifts

Step 3: Propose Initial Design, Conduct Inelastic Analysis, and Develop Design Mechanism

Step 4: Determine Equivalent Hysteretic Damping

Step 5: Determine Equivalent Structural Period

Step 6: Compute Required Base Shear, \((V_{eq})_{req} \)

Step 7: Predict Actual Base Shear, \((V_{eq})_{actual} \)

Step 8: Verify Base Shear

Step 9: Complete Structural Detailing

Not Good

Modify Lateral System

OK
task 3- conduct cyclic-load test of shear-walls

- designed and conducted cyclic-load tests of 41 masonry shear-walls at UT Austin and WSU
task 4- improved analytical tools

- predict nonlinear resistance and failure behavior
- predict local and global responses and deformations
- different modeling approaches were considered
 - nonlinear “macro” models, PERFORM 3D “General Wall Element”
task 5- validation of displacement-based design

- application of proposed displacement-based design and analytical tool
- a full-scale two-story reinforced masonry shear-wall system, complex geometry of openings
select seismic hazard levels and target drifts

<table>
<thead>
<tr>
<th>seismic hazard Level</th>
<th>damage state</th>
<th>deformation limits</th>
<th>corresponding inter-story drift ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Earthquake (DE)</td>
<td>Safety Damage State</td>
<td>0.8 %</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Maximum Considered Earthquake (MCE)</td>
<td>Collapse Damage State</td>
<td>1.5 %</td>
<td>1.0 %</td>
</tr>
</tbody>
</table>

![Diagram showing flexure-controlled and shear-controlled walls segments]
shake table test of 2-story specimen

- specimen was subjected to an extended series of ground motions

<table>
<thead>
<tr>
<th>order</th>
<th>ground motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30% El Centro 1979</td>
</tr>
<tr>
<td>2</td>
<td>43% El Centro 1979</td>
</tr>
<tr>
<td>3</td>
<td>86% El Centro 1979</td>
</tr>
<tr>
<td>4</td>
<td>108% El Centro 1979</td>
</tr>
<tr>
<td>5</td>
<td>145% El Centro 1979</td>
</tr>
<tr>
<td>6</td>
<td>160% El Centro 1979</td>
</tr>
</tbody>
</table>

160% El Centro response spectrum

T = 0.21 sec, beginning
T = 0.27 and 0.38 sec

spectral peaks at T = 0.27 and 0.38 sec
shake-table test of specimen above MCE

- specimen successfully resisted repeated ground motions up to MCE
measured vs. predicted responses

- walls exceeded expected deformation capacities

Wall W - 1 was flexure-dominated, exceeded 1% drift ratio

Wall W - 2 was shear-dominated, exceeded 2% drift ratio

Wall W - 3 was shear-dominated one way, flexure-dominated the other way, exceeded 1% drift ratio
important points of this presentation

• current force-based seismic design does not always work well for reinforced masonry shear-wall structures

• proposed displacement-based seismic design works for masonry shear wall structures
 ▫ it produces structures that behave reliably in strong earthquakes
 ▫ it is more consistent and more transparent than current force-based seismic design