

Background Information on the Development of a Tsunami Code

TLESC chair: Gary Chock <gchock@martinchock.com>

- A U.S. national standard for engineering design for tsunami effects does not exist. As a result, tsunami risk to coastal zone construction is not explicitly addressed in design.
- The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee has developed a new Chapter 6 - Tsunami Loads and Effects for the ASCE 7-16 Standard, which has been passed and is pending approval.
- ASCE 7-16 to be published by March 2016
- Tsunami Provisions would then be referenced in IBC 2018
- State Building Codes of AK, WA, OR, CA, and HI ~ 2020
- ASCE will be publishing a design guide in 2015 with design examples.

ASCE 7 Chapter 6

- 6.1 General Requirements
- 6.2-6.3 Definitions, Symbols and Notation
- 6.4 Tsunami Risk Categories
- 6.5 Analysis of Design Inundation Depth and Velocity
- 6.6 Inundation Depth and Flow Velocity Based on Runup
- 6.7 Inundation Depth and Flow Velocity Based on Site-Specific Probabilistic Tsunami Hazard Analysis

3

- 6.8 Structural Design Procedures for Tsunami Effects
- 6.9 Hydrostatic Loads
- 6.10 Hydrodynamic Loads
- 6.11 Debris Impact Loads
- 6.12 Foundation Design
- 6.13 Structural Countermeasures for Tsunami Loading
- 6.14 Tsunami Vertical Evacuation Refuge Structures
- 6.15 Designated Nonstructural Systems
- 6.16 Non-Building Structures

Tsunami design criteria for Resistance R is based on the 2500-year MRI Maximum Considered Tsunami without any load factor.

- The Maximum Considered Tsunami (MCT) has a 2% probability of being exceeded in a 50-year period, or a ~2500 year average return period.
- The Maximum Considered Tsunami is the design basis event, characterized by the inundation depths and flow velocities at the stages of in-flow and outflow most critical to the structure.
- The Tsunami Design Zone is the area vulnerable to being flooded or inundated by the Maximum Considered Tsunami. The runup for this hazard probability is used to define a Tsunami Design Zone map.

Reliability Analysis of Structures Designed in Accordance with ASCE 7 Tsunami Chapter Hydrodynamic Forces

- Probabilistic limit state reliabilities have been computed for representative structural components carrying gravity and tsunami loads, utilizing statistical information on the key hydrodynamic loading parameters and resistance models with specified tsunami load combination factors.
- Through a parametric analysis performed using Monte Carlo simulation, it is shown that anticipated reliabilities for tsunami hydrodynamic loads meet the general intent of the ASCE 7 Standard.
- Importance factors consistent with the target reliabilities for extraordinary loads (such as seismic) are validated for tsunami loads

Representative Buildings

Tsunami Risk Category:

- Tsunami Risk Category II building
- Tsunami Risk Category III and IV buildings
- Tsunami Vertical Evacuation Refuge Structure, Risk Category IV, with reliability equation adjusted for the prescribed I_{tsu} and 1.3h inundation depth requirements

Building Structure:

- 6 to 7-story reinforced concrete
- Gravity-Load-Carrying Columns
- Note: tsunami loads are sustained
- Reliability analysis is for critical gravity-load carrying vertical components whose failure could result in partial collapses

Risk Categories of Buildings and Other Structures per ASCE 7

Not all structures within the TDZ are subject to the provisions		
Risk Category I	Buildings and other structures that represent a low risk to humans	
Risk Category II	All buildings and other structures except those listed in Risk Categories I, III, IV	
Risk Category III	Buildings and other structures, the failure of which could pose a substantial risk to human life. Buildings and other structures with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure.	
Risk Category IV	Buildings and other structures designated as essential facilities Buildings and other structures, the failure of which could pose a substantial hazard to the community.	
• The Categor	tsunami provisions target the performance of Risl y III and IV and taller Risk Category II structure	

	Importance Factors I _{TSU}	
	 Takes into account reliability analysis includin requirement to conduct Site-Specific Inundati Analysis for Risk Category IV, Vertical Evacu Refuges, and Designated Risk Category III Co Facilities 	ng the on lation ritical
/	Risk Category	I tsu
	II	1.0
	III	1.25
/	Risk Category IV, Vertical Evacuation Refuges,	1.25
	& Designated Risk Category III Critical Facilities	

Tsunami Vertical Evacuation Refuge Structures

 Tsunami Vertical Evacuation Refuge Structures - ASCE 7 Chapter 6 is intended to supersede both FEMA P646 structural guidelines and IBC Appendix M – P646 vastly underestimates hydrodynamic forces and vastly overestimates debris impact forces

lowest occupiable Refuge Level is one story higher, but not less than 10 ft. above the Refuge Design Inundation Depth	Refuge Design Inundation Depth
Refuse Design Inundation	Inundation Depth
Elevation coincides with 130% of inundation elevation	
Grade Plane of Structure	Reference Datum NAVD 88 -Site-Specific Max. Considered Tsunami invedition elevation at the structure

Design Values of Inundation Depth and Flow Velocity (*hu*²)

- There are two procedures for determining the MCT inundation depth and velocities at a site:
 - 1. Energy Grade Line (EGL) Analysis
 - 2. Site-Specific Inundation Analysis
- Energy Grade Line Analysis is fundamentally a hydraulic analysis along the topographic transect from the shore line to the runup point.
- Site-Specific Inundation Analysis utilizes the Offshore Tsunami Amplitude for a numerical simulation that includes a higher-resolution digital elevation model of nearshore bathymetry and onshore topography.
 - Site-Specific Inundation Analysis is required for Risk Category IV structures

Parameters

- C_d/C_{dn} is assumed to be constant = 1.0 unbiased
- *Density:* ρ_s/ρ_{sn} is assumed to be with Normal Distribution with mean = 1.0 and a COV = 0.03.
- Closure Ratio: b/b_n is also assumed to uniformly distributed. To account for assorted debris accumulation, for buildings initially clad, the designer can conservatively assume only 30% of this becomes "open". Actual accumulation is estimated to be in the range of creating a 40% to 60% closure ratio, rather than the prescribed 70% as used for design
- *Inundation Depth* $\frac{h_e}{h_{en}}$ is sampled from the CDF of maximum inundation depth hazard curve

Parameters

$$\frac{\lambda}{\lambda_n} \frac{R}{\phi R_n} = \frac{\rho_s}{\rho_{sn}} \frac{C_d}{C_{dn}} \frac{b}{b_n} \psi \varepsilon^2 \left(\frac{h}{h_o}\right)^2 \frac{1.0}{I_{tsu}}$$

• ε accounts for the net aleatory uncertainties in estimated inundation depth (modeled with a lognormal distribution (mean of 1.06 and ζ =0.36 for EGL, 0.30 for Site-Specific)

- ψ is a variable to account for the statistical bias in the nominal solution (i.e., code-specified **Energy Grade Line Analysis**) vs. numerical model (Observed value). it is specified to be a one sigma increase of the mean hazard curve. (Data from 36,000 simulations by Pat Lynett)
- Tsunami Importance Factor I_{tsu} is the specified bias factor that is a constant for each Tsunami Risk Category.

7 Statistical Parameters & 3 scalars - Summary			
Parameter	Mean	COV (sigma/mean)	Distribution
ρ/pn (density)	1.0	0.03	Normal
b/b _n (closure)	0.714	0.124	Uniform
ε (aleatory uncertainty of hazard analysis)	1.06 (Median 1.0)	sigma =0.36 COV= 0.34 (EGL)	Lognormal
	0.610	0.894	Empirical curve derived from 36,000 numerical simulations
$\frac{h_e}{h_{en}}$ (inundation depth)	PTHA Hazard Curve		
R/R _n (Resistance)	1.05	0.11	Normal
Resistance factor	0.9		Scalar
λ/λ_n (beam-column effect)	1.15	COV = 0.17	Lognormal
I (Importance Factor)	Constant in accordance with Tsunami Risk Category		
Vertical Evacuation Structure	h _{en} increased by 1.3 Scalar		Scalar

Site		Tsunami Risk Category II I = 1.0	Tsunami Risk Category III I = 1.25	Tsunami Risk Category IV I = 1.25	Evacuation Refuge I = 1.25 & 1.3h _n
Average of the	Reliability index	2.74	2.87	3.03	3.68
Sites	P _{f annual}	6.1x10 ⁻⁵	4.1x10 ⁻⁵	2.6x10 ⁻⁵	9.2x10 ⁻⁶
	P _{f 50-year}	0.31%	0.21%	0.13%	0.05%
Failure	Reliability index	1.44	1.66	1.93	2.40
conditioned on the occurrence of the MCT	Maximum probability of failure	7.5%	4.9%	2.7%	0.82%

Anticipated reliability (maximum probability of
systemic failure) for earthquake

Risk Category	Probability of	Failure probability
	failure in 50-	conditioned on Maximum
	years	Considered Earthquake
		shaking
II (Total or partial structural	1%	10%
collapse)		
III (Total or partial structural	0.5%	5-6%
collapse)		
IV (Total or partial structural	0.3%	2.5-3%
collapse)		

Component Reliabilities for Tsunami Vertical Gravity-Load Carrying Members (MCT) vs. System Pushover Reliabilities for Seismic (MCE)

Conditional Probabilities of limit state exceedance

- [●] II: 7.5% _(MCT) vs 10% _(MCE),
- III: 4.9% (MCT) vs. 5% (MCE), and
- IV: 2.7% (MCT) vs. 2.5% (MCE)
- Tsunami Vertical Evacuation Refuge Structure <1% (MCT)</p>
- The 50-year exceedance of limit state probabilities are:
 - , II: 0.3% _(MCT) vs 1% _(MCE),
 - III: 0.2% (MCT) vs. 0.5% (MCE), and
 - IV: 0.13% (MCT) vs. 0.3% (MCE).

Conclusions

- PTHA-based design criteria The method of Probabilistic Tsunami Hazard Analysis is consistent with probabilistic seismic hazard analysis in the treatment of uncertainty.
- The conditional vertical load-carrying <u>component</u> reliabilities for the Maximum Considered Tsunami (MCT) are nearly equivalent to those expected for seismic systemic pushover (MCE) effects.